在预设与生成的融合中焕发数学课堂的生命活力
教育家布鲁姆说过:“人们无法预料教学所产生的成果的全部范围。没有预料不到的成果,教学也就不成为一种艺术了。”教学过程是师生交往、互动的过程,学生不是配合教师上课的配角,而是具有主观能动性的人。课堂教学不应当是一个封闭系统,也不应拘泥于预先设定的固定不变的模式,要鼓励学生互动中的大胆超越和即兴创造。随着学习理论的发展,建构主义已成为新一轮课程改革的理论基础之一,学习被广泛地认为是学生头脑中原有认知结构的重建过程,是一种个性化的生成活动。笔者认为,课堂教学是预设与生成,封闭与开放的矛盾统一体,两者之间的关系是辩证的,是相辅相成的,数学教学需要预设,而精心的预设又必须通过课堂的生成才能实现其价值。因此,必须处理好预设与生成的关系,在精心预设的基础上,针对教学实际进行灵活调整,追求动态生长,从而让数学课堂在预设与生成的融合中焕发生命活力。本文试从一堂公开课说说笔者的一点认识和体会。
一、课前的准备与预设
课题:三角形全等的判定(一)(复习课)
教学目标:
1、知识获取目标:使学生进一步熟悉三角形全等的判定定理1的内容,加深对等腰三角形性质的理解,达到学生系统获取知识的目的。
2、能力培养目标:通过一题多变,培养学生的发散思维能力,让学生善于观察图形,积极进行直觉猜想,提高学生分析问题、解决问题的能力。
3、情感孕育目标:培养学生敢于发现的探索精神,实事求是的科学精神和勇往直前的进取精神。
教学重、难点:从复杂多变的图形中探究满足定理的条件。
教学方法:以“引导——探究”为主,“启发——讨论”相佐。
教学思路:首先,课前,教师给出复习提纲,让学生带着问题自学教材P
例2、已知,如图, AB=AC, E、F分别是AB、AC上的点,且AE=AF。
二、课中的生成与处理
在上这节课时,并没有按笔者的设计方向发展。自然,设计中的“连接BC”,经讨论,分别有两学生论证了△ABF≌△ACE和△BCE≌△CBF。接着,我对条件中的“AE=AF”加上着重号,让学生仿照上面做法,对图形稍作变化(意在提醒“连接EF”)编一道几何题。话音刚落,一生举手发言:“我把△AEC绕点A旋转一定角度,此题就变成了P





