数学课程改革中的向量背景分析
1 向量进入中学数学的背景分析
1.1 向量的双重性
向量是一个具有几何和代数双重身份的概念,同时向量代数所依附的线性代数是高等数学中一个完整的体系,具有良好的分析方法和完整结构.通过向量的运用对传统问题的分析,可以帮助学生更好地建立代数与几何的联系,也为中学数学向高等数学过渡奠定了一个直观的基础.这方面的案例包括平面几何、立体几何和向量解析几何.
1.2 认识向量的另外角度
把平面和空间看出是一个向量场,可以培养学生对结构数学的认识,而结构数学是现代数学发展的主要方向.利用参数方程的概念,可以把曲线看作向量函数的轨迹,可以使学生方便地运用微积分于几何的研究和学习.这里也可以把向量的引入理解为现代数学与初等数学的衔接的组成部分之一.
1.3 “数、量与运算”的扩大
从“数、量和运算”发展的角度理解“向量”,把向量的加法(减法)、数乘以向量和向量的数量积看作新的运算,使学生认识到数、量和运算的形式在不断的发展.更为重要的是在教材和教师教学的处理上应该表现出“数、量和运算”的一个发展趋势链,其中数的发展包括正整数(自然数)→零和自然数→正分数(有限小数和无限循环小数)→非负有理数→有理数→无理数(无限不循环小数)→实数→复数,从代数结构的角度看,经历了整数环→有理数域→实数域→复数域(1883年Hamilton的四元数域是不满足乘法交换律的复数域的扩大,在此意义上说复数域是最大的数域),这些“数”所对应的“量”都是一类的,并且至此“运算”的结构没有改变,从整体上看“数”在发展,而“量”及“运算”没有本质的发展.因此向量不是“数”的简单扩大,它所关注的不是“数”的扩大问题,而是“量及运算”的扩大问题.因而在向量的引入时,不宜从代数方程的角度出发,可能从力学的实际背景出发更能体现出“量”的发展.同时还应该强调的是向量代数是以前所有“数的运算”的一个发展(如果我们能够引入向量的向量积运算,将使学生第一次看到运算可以不满足交换律的真正案例),使学生对此问题有一个发展的理解,由此也为今后引入矩阵及其运算做了铺垫.1.4 国际数学教育对向量的处理
国际数学教育的发展已全面反映了综合几何的学习的落后,向量和矩阵进入中学数学是一个大的趋势,比如美国NCTM2000的《学校数学的原则和标准》、《新西兰数学课程标准》和《澳大利亚数学教学大纲》都在此问题上有全面的反映.从总体上分析,基本共识是基于以下的事实:1899年希尔伯特的《几何学基础》的发表,标志着几何学基础的彻底革新,也发展了现代数学的公理化模式.以此为推动力,数学本体上在这个方面的研究几乎穷尽.中学的综合几何就是扩大了公理体系的希尔伯特几何的简单情形.如果我国几何教学仍然停留在此不动,那么很难说我们的数学教育反映了数学发展的进程,也与国际数学教育的发展相去甚远. 1.5 数学和物理学的关系在向量中的体现





