教师培训资料“式与方程”和“正比例、反比例”

减小字体 增大字体 作者:本站收集整理  来源:本站收集整理  发布时间:2009-08-03 09:33:45

2,强调对模式与关系的体会、理解。

方程的学习,以往注重的是有关概念和技能,如什么叫方程,什么叫方程的解,什么叫解方程,方程的解与解方程有什么不同,怎样解方程等。再如列方程解应用题,历来被看作是教学的重点和难点,在教学中,教师往往满足于头头是道地给学生分析等量关系,机械地列出方程,解答问题。这样的教学,学生没有经历数学建模的过程,无法体会方程是现实世界的数学模型,应用意识和实践能力的培养也就成了一句空话。

方程是刻画现实世界数量关系的数学模型。《标准》强调从“数学建模”的角度开展方程的教学。结合具体的总是情境教学方程的含义,如“用式子表示天平两边物体的质量关系”,让学生通过观察、分析,写出式子,再比较式子的异同,在讨论和交流中,由具体到抽象感受、理解方程的含义。

解方程的教学,让学生依据等式的性质对数学模型进行变换,探求方程的解。教学列方程解决简单的实际问题,要求学生在问题情境中,探索、研究、寻求已知与未知之间的内在联系,建立数量之间的相等关系,即把日常语言抽象成数学语言(数量关系式),进而转换成符号语言(方程式)。在经历多次这样的活动后,学生将逐步感受到方程与实际问题的联系,领会数学建模的思想和基本过程,提高解决问题的能力和信心。函数是刻画现实世界数量变化规律的数学模型。正比例、反比例中隐含的数学函数思想,对学生后续学习数学、物理、化学等学科有重要的促进作用。学习正比例、反比例,数学思维方式发生重要转折,即思维从静止走向运动,从离散走向连续,从运算走向关系。以入教学“正比例、反比例”,教师的着力点往往是引导学生判断两种相关联的量是否成比例,是成正比例还是反比例,以及怎样应用比例知识解答应用题。在《标准》中,通过绘图、估计值、找实例交流等不同于以往的教学活动,帮助学生体会两个变量之间相互依存的关系,丰富关于变量的经历,为以后学习函数概念打下基础。

3,注重在具体情境中去体验、理解有关知识。

“式与方程”、“正比例、反比例”的具体教学目标十分强调“在具体情境中”进行教学。这是因为,小学阶段,学生的数学思维从以具体形象思维为主要形式向抽象逻辑思维为主要形式过渡,其抽象逻辑思维在很大程度上仍与感性经验直接相关联。“式与方程”、“正比例、反比例”的内容在表达形式上比较抽象,作为代数、函数学习的启蒙阶段,通过创设与学生生活环境、知识背景密切相关的,又是学生感兴趣的学习情境,把学习的过程置于一个学生能够体验的环境,从而在直观的感受中,理解字母表达式所反映的等量关系,并会用代数的方式解决一些实际问题,掌握正比例、反比例知识。这正如《标准》所认为的:数学学习“不仅要考虑数学自身的特点,更应遵循学生学习数学的心理规律”。

如果说数字符号是对生活中各种物体个数的抽象概括,那么代数式则是对各种数字符号的抽象概括。在认识用字母表示数时,教材一般从学生熟悉的生活中选择一些典型数量关系,先让学生用算式表示问题的结果,再通过改变具体数量,抽象出用字母表示数,写出相应的含有字母的式子。具体情境能激活学生已经积淀的算术层面对数量关系的理解,支撑学生在代数层面对数量关系的理解。既使新知识“含有字母的式子”的学习过程有场景作依托,又使学生在读解式子时便于产生联想并理解和表述,使学生在学习抽象的代数知识中感到言之有物,还能认识到代数的学习可以使我们对数量关系的表达更清晰、简洁。

这一数学活动的过程,帮助学生从“算术”走向“代数”,促进学生体验数学的概括性和抽象性,发展符号感。再如,“会用方程表示简单情境中的等量关系”这一目标的重点也是“在具体情境中,用方程建立等量关系”。

上一页  [1] [2] [3] [4] [5] [6] [7]  下一页

Tags:

作者:本站收集整理
  • 好的评价 如果您觉得此新频道好,就请您
      0%(0)
  • 差的评价 如果您觉得此新频道差,就请您
      0%(0)

新频道评论评论内容只代表网友观点,与本站立场无关!

   评论摘要(共 0 条,得分 0 分,平均 0 分) 查看完整评论