中学生对完全平方公式的记忆
1、知识的同化(assimilation)
同化就是把新知识纳入原有认知结构并使之分化、扩充,从而形成新的认知结构的过程.知识同化一般需要以下几个条件:(1)学习者原有的认知结构中必须具有同化新知识的相应知识基础.如学生要同化新知识完全平方公式就必须在原有认知结构中具有乘方的概念、多项式乘法法则、有理数的乘方运算(特别是负数的乘方运算)、积的乘方运算和幂的乘方运算等知识.而对于数学能力差的学生对于以上这些基础知识的掌握总是有所缺乏,因此对于他们同化完全平方公式存在着知识的障碍.(2)学习材料必须具有逻辑意义,并能够反映人类的认识成果.完全平方公式实质上是多项式乘法中两个相同二项式相乘的特殊情形,因使用较多且一个数的平方具有非负特性而独立成一个公式.完全平方公式可以通过拼图计算面积得到验证,从而具有几何意义.而数学能力差的学生对于逻辑意义认识上存在一定的缺陷从而造成对于完全平方公式的本质和逻辑上的认识障碍.(3)学习者还应具有理解所学材料的动机.对于已掌握多项式乘法运算的数学能力差的学生更习惯用
进行多项式乘法运算,而懒于记忆完全平方公式.而对于这部分知识也缺乏的数学能力差的学生,在他们的认知结构发展过程中,顺应起了主导作用.如果新知识在原有的数学认知结构中没有适当的观念与它相联系,那么就必须对原有的数学认知结构进行改组,以便纳入新知识形成新的数学认知结构,这一过程叫做顺应.他们对于分配律已接受而且掌握得很牢固.他们难以理解为什么
呢?他们情愿保留分配律所形成的认知结构
而抗拒做出改变来正确记忆完全平方公式.
2、知识的保持.
下面从重现的基本规律和记忆的形式上两方面分析其记忆障碍.
一方面,重现具有以下基本规律:(1)有意重现(即回忆)的效果有赖于重现的目的性,就是平常所说的“心中有数”;如有学生能记忆公式,但不能与“完全平方公式”语词联系起来,再如对于隐藏较深用此公式的,不能分辨出,从而不能回忆出此公式,这些都是回忆的目的不明确造成的.(2)有意重现的效果有赖于重现的自信心,即对自己的记忆要充满信心;当遇到未见过题型时,自信心不够,不能回忆出是用此公式解决问题.(3)有意重现的效果有赖于重现时的心理品质,既有坚强的毅力和持久的耐力,再就是灵活机动,不钻牛角尖或机械地死记硬背;(4)有意重现的效果有赖于方法得当.
另一方面,从记忆的形式上,学生常采取最低层次的数学记忆,使得记忆的数学知识会很快遗忘,或用时难以提取出来.数学能力平常的部分学生和数学能力差的学生往往采取机械记忆完全平方公式,使得对完全平方公式的保持构成了障碍.
3、知识的迁移
迁移就是一种学习对另一种学习的影响.迁移现象是客观存在的,但迁移的发生不是无条件的,也不是自动的,而是有规律的.下面从影响知识迁移的基本因素角度来分析学生对完全平方公式掌握中存在的障碍.(1)对象之间的共同因素.迁移决定于已学知识和将要学习的知识之间的相同因素.相同因素越多,迁移量越大.这就是说,新刺激要求旧反应时最容易也最自然产生迁移.学生已记忆完全平方公式的表面形式,但是找不到形式上有所不同如
的计算与其之间的共同因素,因此在解答这些变式题目时就难以正确迁移完全平方公式,从而也就形成了对该公式的进一步理解和深入记忆的障碍.(2)理解和概括水平.只要一个人理解了知识,概括了自己的经验,就能完成从一种学习情景到另一种学习情景的正迁移,即原有的知识的概括水平越高,迁移的可能性越大.已有的知识的概括性之所以影响迁移,主要是由于在迁移过程中学生必须依据已有的知识经验去辨别当前的事物.如果已有的经验概括水平高,反映了事物的本质,把它纳入到已有的经验系统中去,这样迁移就顺利.否则就会给迁移造成困难和错误.有些学生对完全平方公式只是死记硬背,没有理解完全平方公式就是多项式乘法的特殊情形而只记忆公式的表象,接着又没有真正理解公式所蕴涵的模型、符号思想等方面的意义,即对该公式的概括水平较低,因而能够迁移公式的可能性也比较小,对于复杂多变的运用完全平方公式的题目那就更是一筹莫展了.又如对公式只理解到2ab的符号与两数a、b中间的运算符号一致的水平,而不能概括到根据a、b两数是同号还是异号来确定2ab的符号的水平,从而对于如
的计算就出现符号上的错误.(3)认知结构.学生由于知识水平有限,往往抓不住事物的本质,以致混淆各类事物,造成负迁移.而且学生在原有学习过程中能否形成一种有组织的、方法得当的思考方式或解决问题的方式方法,这也同样影响公式的迁移.学生在学习完平方差公式
之后学习完全平方公式,学生已建立平方差公式的认知结构,其结论只有简单两项,而完全平方公式的结论有三项,且中间项是2ab,而不是平方形式的等等特征.因此学生原有认知结构对完全平方公式的迁移是不利的,从而也就影响完全平方公式的认知结构的建立.(4)学习定势的影响.所谓定势指的是先于一定活动而指向一定活动的一种动力准备状态,而学习定势则指以特殊方式进行学习或作业的倾向.一般来说,运用学习定势解决同类性质的新问题时容易产生正迁移,若解决可变量的新问题,则会产生负迁移.如学生解决如





