圆的轴对称性——垂径定理及其推论 九年级数学说课稿
圆的轴对称性——垂径定理及其推论
各位专家、评委:
你们好!很高兴能有机会参加这次活动,并得到您的指导。
我说课的题目是:圆的轴对称性——垂径定理及其推论。它是北京市义务教育课程改革实验教材第17册第22章第三节的内容。这部分内容教材安排了两课时,其中第一课时讲圆的轴对称性,第二课时讲圆的旋转不变性。结合我对教材的理解和我所任教班级学生的实际情况,我将圆的轴对称性一课时内容调整为两课时,今天我所讲的是第一课时——垂径定理及其推论。
下面,我就从教学内容,教学目标、教学方法与手段、教学过程设计等四个方面进行说明。
一、教学内容的说明
教师只有对教材有较为准确、深刻、本质的理解,并从“假如我是学生”的角度审视学生的可接受性,才能处理好教材。同时垂径定理和它的推论反映了圆的重要性质,是证明线段相等、弧相等、垂直关系的重要依据,还为进行圆的计算和作图提供了重要依据,因此这部分内容是学习的重点,同时由于它的题设和结论较为复杂,容易混淆,因此也是学习的难点。鉴于这种理解,通览教材,我确定出如下教学内容:
(1)了解圆的轴对称性。
(2) 弄清垂径定理及其推论的题设和结论。
(3)运用垂径定理及其推论进行有关的计算和证明。
(4)学会与垂径定理有关的添加辅助线的方法。
教学重点:垂径定理及其推论
教学难点:垂径定理的证明方法,其中圆的轴对称性是理解垂径定理的关键。
二、教学目标的确立
根据本课的具体内容、学生的实际情况,我确立了如下的教学目标:
1、通过直观演示了解圆的轴对称性。
2、通过“试验——观察——猜想——证明”掌握垂径定理及其推论。
3、运用垂径定理解决有关的证明、计算和作图问题。
4、培养学生的数学直觉能力、抽象概括能力。激发学生的探索精神。
三、教学方法与手段的选择
在教学方法方面:本节课主要采用了教师启发引导下的学生自主探究、小组合作学习以及分层教学、分层评价的方法。在教学过程中,遵循“实验-观察-猜想-证明-讨论-总结-应用”这一思路,使学生由感性认识上升到理性认识,再到实际应用。遵循“阶梯式发展”原则,引导学生在独立分析、认真思考的基础上,以小组讨论等形式合作探究,进而解决问题、掌握方法。同时,考虑到不同层次学生的学习需要,在所提问题、例题、习题的设置上,均力争使每名学生都有所得。
在教学手段方面:我采用教(学)具直观演示与计算机辅助教学,以提高课堂教学效率。
四、教学过程的设计
1、 坚持一条原则:学生是主体,教师是教学过程的组织者、引导者、合作者。
2、 围绕一个目的:落实教学目标
3、 突出一个特点:通过“实验-观察-猜想-证明-应用”帮助学生实现由感性认识到理性认识的过渡
4、 采用一种手段:借助教具的直观性和计算机辅助教学,启发引导学生发现定理,从而抽象概括出定理
5、 收到一个效果:使学生通过本节课的学习,能够理解定理的内涵,学会运用定理解决问题。同时使学习知识、培养能力和优化思维品质融为一体。
学法指导:动手操作、 观察猜测、 交流讨论、 分析推理、 归纳总结,在此过程中使学生积极参与,交流互动。
本课的教学过程包括:以旧引新、引导探究——动手操作、观察猜想——指导论证、引申结论——多方练习、分层评价——反思小结、布置作业五个环节。
(一)以旧引新、引导探究
人类认识事物大多遵循由感性认识到理性认识,由旧知到新知的上升过程,为此我先引导学生复习与本课新知识有关的旧知识,出示如下两个问题:
(1)什么是轴对称图形
(2)观察下列图形哪些是轴对称图形?并指出对称轴条数。
其中第一题的目的在于唤起学生记忆,明确轴对称图形的概念。进而选取几种常见的几何图形让学生判断,其中的平行四边形是从反面强化对轴对称图形的理解。第二组是有关车标图案的轴对称图形,………………………………【全文请点击下载word压缩文档】
点击下载此文件





