中查找““反正弦函数”一节说课”更多相关内容
中查找““反正弦函数”一节说课”更多相关内容- ·上一篇新频道:等比数列的前n项和
- ·下一篇新频道:课题:《代数式》一节的说课
“反正弦函数”一节说课
至此,“设疑”成功,下面的工作是调动学生的积极性,观察图象和练习,找出解决的办法,制造“一一对应”。
2、 借助动画,解决疑问,为突出重点、突破难点作准备。
引导学生再次注意函数的图象,提出问题:在(-∞,+∞)内正弦函数没有y→x的一一对应存在,但在定义域的局部会不会存在这种对应呢?如果有,又应找出哪一段呢?学生可能指出[-π/2, π/2]区间,也可能指出[π/2, 5π/2]区间……,在这些区间中,哪一个是正确答案呢?这时出示电脑投影,将学生选择的区间在屏幕上扩大显示,由学生逐个分析(在出示的局部图形中应包括[0, 5π/2]这样的区间),学生自己讨论,应该选取怎样的区间来得到y→x的一一对应。最终,学生逐渐会得到结论:(1)[0, 5π/2]这部分不符合要求,因为在这一区间内,有y→x的一对二的对应存在。(2)[-π/2,0] [0, π/2]不符合要求,因为它们的函数值不能取到[-1,1]内所有值,这会导致反函数的定义域不符合要求。(3)[-π/2, π/2],[π/2, 5π/2]这两个区间哪一个可以呢?引导学生发现:从利于研究问题的角度看,以[-π/2, π/2]这一部分来得到反正弦函数最好。在这一部分中,有y→x的一一对应存在,有正负锐角这种比较容易处理的自变量,而且y取到[-1,1]的全体值,确保反函数的定义域是原函数的值域。这就突破了难点,同时突出了重点 反正弦函数概念。
教师板书反正弦函数的表达式并指明定义域,值域。并强调:①反正弦函数的函数值是一个角,②反三角函数值的范围必须是[-π/2, π/2]。
这一部分的教学设计,主要是发挥学生作为教学主体的主动性,自己去寻找解决问题的方案,通过积极的双边活动来达到教学目标。多媒体的形式也为这种想法提供了很好的解决方案。
3、利用对称性作出反正弦函数的图像,找出反正弦函数的性质。
既然学生已了解了函数的概念,进一步揭示其性质就成为必然而且必须。
利用投影、动画,根据对称性很容易作出反正弦函数的图像(必须提醒学生回忆反函数图像与性质),图像有了,函数的基本性质也就得到了。这时,出示投影,指明函数的几个性质,作一个初步的归结。
4、 通过例题使学生巩固概念,初步具备解决问题的能力。
动口还需动手,通过例题,使学生巩固概念,加深认识,初步具备解决相关问题的能力,同时也突出重点,进而突破难点。
例1、 求下列反正弦函数值:
(1)arcsin√2 /2 ; (2)arcsin(-1/2); (3)arcsin(-1)
教师引导学生分析题目,使学生认识到:①反正弦函数的函数值是一个角,②反三角函数值的范围必须在[-π/2, π/2]内。教师示范板书第一小题,其余两道题由学生上台完成。通过练习巩固概念,突出重点。
例2、若а∈[π/2,π],且sinа=1/2,则а的正确表示法是( )
(a)π/2 +arcsin(1/2) (b) π/2-arcsin(1/2)
(c)π-arcsin(1/2) (d) π+arcsin(1/2)
对于这道题,教师应引导学生注意:arcsin(1/2)的值是特殊角300,它应在[0,π/2]内,怎样用这样一个角去表达[π/2,π]范围内的一个角呢?由学生自己思考完成。通过这道题,加深学生对反正弦函数的理解,并为下节课的提高做好准备。
(三)、终结阶段
1、进行课堂练习,巩固概念,强化学生对这节课的掌握。
学生完成两道练习题。这两道题都采取了客观题的形式,难度中等,使学生接受概念并能简单运用,同时为下节课的进一步提高做个铺垫。教师等学生完成后,叫成绩中等的学生起立回答,如果有错误,让其它学生起立纠正。
2、课堂小结
通过对反正弦函数概念和性质的小结,使学生理清这节课的重难点。
3、布置作业。
让学生做课本p284习题十九1、2,通过作业反馈对所学知识掌握的效果,以利课后解决学生尚有疑难的地方。
总之,在整个教学设计中,我抓住学生的“主体”作用作文章,不浪费任何一个促使学生“自省”的机会,让学生主动自觉地发现结果、发现“方法”,进而优化了整个教学。 (完)





