整式的加减 七年级数学说课稿

减小字体 增大字体 作者:本站收集整理  来源:本站收集整理  发布时间:2010-10-06 11:41:32

一、教材分析:

1、教材所处的地位及作用:

本节课选自新人教版数学七年级上册§2.2节,是学生进入初中阶段后,在学习了用字母表示数,单项式、多项式以及有理数运算的基础上,对同类项进行合并、探索、研究的一个课题。合并同类项是本章的一个重点,其法则的应用是整式加减的基础,也是以后学习解方程、解不等式的基础。另一方面,这节课与前面所学的知识有千丝万缕的联系:合并同类项的法则是建立在数的运算的基础之上;在合并同类项过程中,要不断运用数的运算。可以说合并同类项是有理数加减运算的延伸与拓广。因此,这节课是一节承上启下的课。

2、学情分析:

七年级学生刚刚跨入少年期,理性思维的发展还有很有限,他们在身体发育、知识经验、心理品质方面,依然保留着小学生的天真活泼、对新生事物很感兴趣、求知欲望强、具有强烈的好奇心与求知欲,形象直观思维已比较成熟,但抽象思维能力还比较薄弱。于是我根据学生和中小学教材衔接的特点设计了这节课。

二、教学目标:

1.知识与技能:

    (1)了解同类项、合并同类项的概念,掌握合并同类项法则,能正确合并同类项.

    (2)能先合并同类项化简后求值。

2.过程与方法:组织学生参与学习、讨论,在合作探究活动中获取知识。

3.情感态度与价值观:激发学生的求知欲,培养独立思考和合作交流的能力,让他们享受成功的喜悦。

三、教学重点、难点:

根据学生的认知水平、认知能力以及教材的特点,确定以下重、难点:

重点:同类项的概念、合并同类项的法则及应用。

难点:正确判断同类项;准确合并同类项。

四、教学方法与教学手段:

(1)           教法分析:

基于本节课内容的特点和七年级学生的心理特征,我在教学中选择互助式学习模式,与学生建立平等融洽的关系,营造自主探索与合作交流的氛围,共同在实验、演示、操作、观察、练习等活动中运用多媒体来提高教学效率,验证结论,激发学生学习的兴趣。

(2)           学法分析:

教学过程是师生互相交流的过程,教师起引导作用,学生在教师的启发下充分发挥主体性作用。七年级的学生,从认知的特点来看,学生爱问好动、求知欲强,想象力丰富,对实际操作活动有着浓厚的兴趣,对直观的事物感知欲较强,是形象思维向抽象思维逐步过渡的阶段,他们希望得到充分的展示和表现,因此,在学习上,应充分发挥学生在教学中的主体能动作用,让学生自己通过观察、类比、活动、猜想、验证、归纳,共同探讨,进行小组间的讨论和交流、利用课件和实物自主探索等方式,激发学习兴趣,培养应用意识和发散思维。

五、教学过程:

一、创设问题情境,引入新课

    1.运用有理数的运算律计算:

    100×2+252×2=      100×(-2)+252×(-2)=

    有理数可以进行加减计算,那么整式能否可以加减运算呢?怎样化简呢?

我们来看本章引言中的问题(2).

    青藏铁路线上,列车在冻土地段的行驶速度是100千米/时,在非冻土地段的行驶速度可以达到120千米/时,在西宁到拉萨路段,列车通过非冻土地段所需时间是通过冻土地段所需时间的2.1倍,如果通过冻土地段需要t小时,则这段铁路的全长是多少?(单位:千米)

    解:这段铁路的全长是:

       100t+120×2.1t

即  100t+252t

2. 类比数的运算,如何化简100t+252t,并说明你的道理。

    思路点拨:教师引导,启发学生类比数的运算,逆用乘法分配律。  

对比:100×2+252×2              100t+252t

     =(100+252) ×2            =(100+252)t

     =704                 =352t

这就是我们这节课要学习的内容:2.2.1整式的加减

二、探究新知

   事实上,100t+252t与100×2+252×2和100×(-2)+252×(-2)有相同的结构,都是两个数分别与同一个数相乘的和,这里t表示同一个因数,因此根据分配律也应该有:100t+252t=(100+252)t=352t.

1.填空

(1)100t-252t=(   )t   (2)3x2+2x2=(   )x2    (3)3ab2-4ab2=(   )ab2

    小组讨论:上述运算有什么共同特点,你能从中得出什么规律?(鼓励学生用自己语言表述)

对于上面的(1)、(2)、(3),都逆用乘法对加法的分配律

100t-252t=(100-252)t=-152t   3x2+2x2=(3+2)x2=5x2  3ab2-4ab2=(3-4)ab2=-ab2

这就是说,上面的三个多项式都可以合并为一个单项式。

讨论:具备什么特点的多项式可以合并呢?

教师引导学生总结:1.所含字母相同。2.相同的字母的指数也相同。 

    像这样,所含字母相同,并且相同字母的指数也相同的项叫做同类项。几个常数项也是同类项。

    2.判断下列各组中的两项是否是同类项:

  (1) -5ab3与3a3b (  )   (2)3xy与3x   (  )   (3) -5m2n3与2n3m2(  ) 

(4)53与35  (  )    (5) x3与53   (  )

   因为多项式中的字母表示的是数,所以我们也可以运用交换律、结合律、分配律把多项式中的同类项进行合并。例如:

          4x2+2x+7+3x-8x2-2        (找出多项式中的同类项)

        =4x2-8x2+2x+3x+7-2         (交换律)

        =(4x2-8x2 )+(2x+3x)+(7-2)  (结合律)

        =(4-8)x2 +(2+3)x+(7-2)     (分配律)

[1] [2]  下一页

Tags:

作者:本站收集整理
  • 好的评价 如果您觉得此新频道好,就请您
      100%(1)
  • 差的评价 如果您觉得此新频道差,就请您
      0%(0)

新频道评论评论内容只代表网友观点,与本站立场无关!

   评论摘要(共 0 条,得分 0 分,平均 0 分) 查看完整评论