导数的几何意义 高三数学说课稿

减小字体 增大字体 作者:本站收集整理  来源:本站收集整理  发布时间:2010-09-29 07:54:33

 

《导数的几何意义》说课稿

一、教材分析:

本节课是《普通高中课程标准实验教科书数学》(人民教育出版社、课程教材研究所A版教材)选修2-2中第§1.1.3节.作为导数概念的下位概念课,它是在学生学习了上位概念——平均变化率,瞬时变化率,及刚刚学习了用极限定义导数基础,进一步从几何意义的基础上理解导数的含义与价值,是可以充分应用信息技术进行概念教学与问题探究的内容.导数的几何意义的学习为下位内容——常见函数导数的计算,导数是研究函数中的应用及研究函数曲线与直线的位置关系的基础.因此,导数的几何意义有承前启后的重要作用.

二、教学目标

【知识与技能目标】

(1)知道曲线的切线定义,理解导数的几何意义;

——让学生感知和初步理解函数 处的导数 的几何意义就是函数 的图像在 处的切线的斜率,即 =切线的斜率.

  (2)导数几何意义简单的应用.

  ——用导数的几何意义解释实际生活问题,初步体会“逼近”和“以直代曲”的数学思想方法.

【过程与方法目标】

(1)       回顾圆锥曲线的切线的概念,复习导数概念,寻找 处的瞬时变化率的几何意义;

(2)       观察P7上探究问题,利用几何画板进行探究,由学生参与操作,发现割线 变化趋势,分析整理成结论;

(3)       通过学生经历或观察感知由割线逼近“变成”切线的过程,理解导数的几何意义;

(4)       高台跳水模型中,利用导数的几何意义,描述比较 处的变化情况,达到梳理新知的目的,渗透“以直代曲”的数学思想;

(5)       通过分析导数的几何意义,研究在实际生活问题中,用区间较小的范围的平均变化率,来解决实际问题的瞬时变化率.

【情感态度价值观目标】

(1)       经过几何画板演示割线“逼近”成切线过程,让学生感受函数图像的切线“形成”过程,获得函数图像的切线的意义;

(2)       利用“以直代曲”的近似替代的方法,养成学生分析问题解决问题的方法,初步体会发现问题的乐趣;

(3)       增强学生问题应用意识教育,让学生获得学习数学的兴趣与信心.

三、重点、难点

重点:导数的几何意义,导数的实际应用,“以直代曲”数学思想方法.

   难点:对导数几何意义的理解与掌握,在每处“附近”变化率与瞬时变化率的近似关系的理解.

   关键:由割线 趋向切线动态变化效果,由割线“逼近”成切线的理解.

四、教学过程

教学环节

教学内容

师生互动

设计意图

 

 

 

 

 

 

 

1. 初中平面几何中圆的切线的定义;

2.公共点的个数是否适应一般曲线的切线的定义的讨论;

3.用幻灯片演示圆的切线和一般曲线的切线情形.

回顾:初中平面几何中圆的切线的定义是什么?

思考:这种定义是否适用于一般曲线的切线呢?

提问:你能否用你已经学过的函数曲线的切线举出反例?

强调:圆是一种特殊的曲线,这种定义并不适用于一般曲线的切线.

教师提出三个层次的问题,由学生思考后回答,诱发学生对圆的切线定义的局限的反思;

借助幻灯片演示感知曲线切线定义的各种情形,为寻找切线的逼近定义提供“亲身”经历.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

演示实验:如图,当点 )没着曲线 趋近点 时,割线 的变化趋势是什么(借助几何画板由割线逼近成切线的过程).

演示过程:

 

 

 

 

 

 

 

板书:1.曲线的切线的定义

时,割线 (确定位置)

 PT叫做曲线在点P处的切线.

2.导数的几何意义

函数f(x)在x=x0处的导数是切线PT的斜率k.即

1.交流讨论观察结果;

2.思考割线 的斜率 与切线 的斜率 有什么关系;

3.参与分析和推导函数f(x)在x=x0处的导数的几何意义.

1.让学生参与曲线的切的逼近发现过程,初步体会曲线的切线的逼近定义;

2.初步感知数学定义的严谨性和几何意义的直观性;

3.让学生利用已学的导数的定义,推出导数的几何意义,让学生分享发现的快乐.

 

观察发现 思维升华

板书:3.数学思想方法:“以直代曲”思想方法.即

曲线上某点的切线近似代替这一点附近的曲线(通过几何画板演示).

 

1.教师诱导学生观察,并下结论,教师强调,“以直代曲”的数学思想方法,是微积分学中的重要思想方法.

2.放大点P的附近,感受切线近似于曲线.

1.让学生直观感知:在点P的附近,PP2比PP1更接近曲线f(x),PP3比PP2更接近曲线f(x),…….过点P的切线PT最贴近P附近的曲线f(x).

2.体会“以直代曲”.

 

学而习之小试牛刀

 

例1:求抛物线 在点 处的切线方程.

变式训练:过抛物线 的点 处的切

线平行直线

求点 的坐标.

1.引导学生分析:切线在切点A处的斜率应该是什么?

2.由学生根据导数的定义式求函数在x=1处的导数,教师写出规范的板书;

3.提出变式训练.

1.初步体会导数的几何意义;

2.回顾用导数的定义求某处的导数;

3.设切点,由求知数来表示导数;

4.规范解题格式.

[1] [2]  下一页

Tags:

作者:本站收集整理
  • 好的评价 如果您觉得此新频道好,就请您
      0%(0)
  • 差的评价 如果您觉得此新频道差,就请您
      0%(0)

新频道评论评论内容只代表网友观点,与本站立场无关!

   评论摘要(共 0 条,得分 0 分,平均 0 分) 查看完整评论