一元一次方程 浙教版七年级数学说课稿

减小字体 增大字体 作者:本站收集整理  来源:本站收集整理  发布时间:2010-10-05 22:36:07

⑴ 5x=0;          ⑵ y2=4+y; 

⑶ 3m+2=1-m;     ⑷ x-=-;

⑸ xy=1.

⒉你能写出一个一元一次方程吗?

(让学生回答,教师在黑板上板书,其他学生帮忙纠正)

点评:1.方程是含有未知数的等式,方程一定是等式,但等式不一定是方程;

      2.方程中未知数可以不止一个,未知数的次数也可以不是1,但一元一次方程是只含有一个未知数,并且未知数的指数是一次,另外方程的两边必须都是整式.

在认识概念时学生可能出现的障碍:

例如:判断 “5=x”和“x-(x-1)=1”两类型的式子

没有出现就算了,有出现的话,教师不要马上给出判断,而是给学生足够的时间和空间去思考、讨论,经过一番对与错的碰撞,教师揭开“谜底”,并且渗透了认识事物要看其本质的教学思想。

(三)交流对话,自主探索

在小学里我们还知道,使方程左右两边的值相等的未知数的值叫做方程的解。

你们知道“合作学习”第⑴题的方程的解吗?

你们是怎么得到的?

(让学生各抒己见,只要学生能说出该方程的解教师都应给予积极的鼓励。)

强调:我们知道x只能取0,1,2,3,4,5,6。把这些值分别代入方程左边的代数式,求出代数式的值,就可以知道x=4是方程的解。这种尝试检验的方法是解决问题的一种重要的思想方法。课本介绍了用尝试,检验的方法求解,以让学生经历尝试,检验的过程,体验尝试作为问题解决的策略的重要性,在这一过程中,学生还能获得不少其他方面的收获,如进一步认识方程的解的意义,体会为什么要先确定x的尝试取值范围,如何确定x的尝试取值范围等。

[做一做]:

⒈判断下列t的值是不是方程2t+1=7-t的解:

      ⑴ t=-2;    ⑵ t=2.

点评:检验过程要注意格式的书写规范,不能直接将数值代入方程.如(1)不能这样写:把t=-2代入原方程,得-4+1=7-(-2), -3=9,所以t=-2不是原方程的解.这样写不对的原因在于未检验之前尚不知t=-2是否原方程的解,也就不知t=-2时方程两边是否相等,这样就不能用等号连接.在初学阶段,要求学生写出解的检验过程是有必要的,这能加深学生对方程解的认识。作业检验过程的表述可以模仿范例。

追问:你能否写出一个一元一次方程,使它的解是t=-2?

这里的追问把练习提高一个层次,给学生一个创造的机会,使学生进一步全面理解一元一次方程及其解等概念。

⒉解方程:⑴ x-2=8;  ⑵ 5y=8.

(让学生思考解法,只要合理均以鼓励。)

除了这些方法,还有没有其它的方法呢?如果方程比较复杂,怎么办呢?下面我们就来研究如何用等式的性质解一元一次方程。

从学生已有的知识和能力出发探索更好的解法

(四)理解性质,应用巩固

实验:1。如果天平两边同时增加或减少相同质量的砝码,那么天平还保持平衡吗?

2.如果天平两边砝码的质量同时扩大相同的倍数或同时缩小为原来的几分之一,那么天平还保持平衡吗?

      设计意图:通过创设情景,引导学生亲身实践知识的发生,发展和形成过程,通过抽象概括,顺利地得出等式性质。

 归纳等式的两个性质

⒈等式的两边都加上或都减去同一个数或式,所得结果仍是等式。

⒉等式的两边都乘以或都除以同一个不为零的数或式,所得结果仍是等式。

说明:在小学我们还学过等式的两个性质,所以课本只作简单回顾。教师引导学生通过天平实验观察、思考、分析天平和等式之间的联系。使学生更好掌握等式性质。(具体、形象)这是根据学生的实际,适当对教材进行处理。

解方程

例⒈利用等式的性质解下列方程:

⑴ x-2=8;        ⑵ 5y=8.

(学生已经用其他方法求解过这两个方程,这里是用等式的性质来解方程.可先让学生自己尝试利用等式的性质进行求解,教师再加以引导。)

例⒉解下列方程:

⑴ 5x=50+4x;     ⑵ 8-2x=9-4x.

(教学时,首先应鼓励学生自己尝试求解这两个方程,并从中体会运用等式的性质解方程的方法,然后提问学生:你是怎样解方程的?每一步的根据是什么?还有其他解法吗?从中让学生体会解一元一次方程就是根据是等式的性质把方程变形成“x=a(a为已知数)”的形式,这也是解方程的基本思路。并引导学生回顾检验的方法,鼓励他们养成检验的习惯)

例题由浅到深,学生易掌握。对(2)有难度,可加提示:为了使含未知数的项都集中到等式的左边,应对方程做怎样的变形?依据是什么?为了使常数项集中到等式的右边,又应对方程作怎样的变形?依据是什么?渗透化归的思想。

[做一做]:

(五)总结反思,布置作业

[说一说]:通过上面的学习,你有什么收获?另外你有什么感触或疑惑?

总结理清知识脉络,强化重点,内化知识,培养能力。

作业的设计采用分层的形式面向全体学生。

五、设计说明:

著名的荷兰数学家弗赖登塔尔曾说过:“与其说数学,倒不如说学习‘数学化’。方程就是将众多实际问题‘数学化’的一个重要模型。在本节课的设计上,我重点突出了“建模思想”。首先设置了丰富的问题情境,鼓励学生思考、探索情境中所包含的数量关系,然后根据这些数量关系设未知数列出方程,经历实际问题数学化并归纳引出一元一次方程。

对七年级学生来说,从具体数的运算到字母参与运算,是学生数学思维的一次大飞跃;从列代数式并进行计算到列方程并求解,又是学生数学思维的一次重大飞跃。因此,在教学中要走小步子,起点要低一些,不能操之过急。本节课我设计了五个问题情境要求学生列方程,以及在用等式性质解方程时设置梯度如:例1,并且在例2的(2)中做了适当的提示(问题串)。

设计中对教材的处理:1、方程和一元一次方程的判断,我是分开练习,并且还增加学生中可能出现的障碍。2、根据对学生原有知识的分析,增加了等式性质的介绍,特别是利用天平使学生比较形象地掌握等式性质,为进一步解方程做好准备。………………………………【全文请点击下载word压缩文档】点击下载此文件

上一页  [1] [2] 

Tags:

作者:本站收集整理
  • 好的评价 如果您觉得此新频道好,就请您
      0%(0)
  • 差的评价 如果您觉得此新频道差,就请您
      0%(0)

新频道评论评论内容只代表网友观点,与本站立场无关!

   评论摘要(共 0 条,得分 0 分,平均 0 分) 查看完整评论