《二项式定理》高三数学说课稿
讲解过程
设问:这里 ,要求的第4项的有关系数,如何解决?
学生思考计算,回答问题;
老师指明①当项数是4时, ,此时 ,所以第4项的二项式系数是 ,
②第4项的系数与的第4项的二项式系数区别。
板书
解:展开式的第4项
。
所以第4项的系数为 ,二项式系数为 。
选题意图:①利用通项公式求项的系数和二项式系数;②复习指数幂运算。
例2 求 的展开式中不含的 项。
讲解过程
设问:①不含的 项是什么样的项?即这一项具有什么性质?
②问题转化为第几项是常数项,谁能看出哪一项是常数项?
师生讨论 “看不出哪一项是常数项,怎么办?”
共同探讨思路:利用通项公式,列出项数的方程,求出项数。
老师总结思路:先设第 项为不含 的项,得 ,利用这一项的指数是零,得到关于 的方程,解出 后,代回通项公式,便可得到常数项。
板书
解:设展开式的第 项为不含 项,那么
令 ,解得 ,所以展开式的第9项是不含的 项。
因此 。
选题意图:①巩固运用展开式的通项公式求展开式的特定项,形成基本技能。
②判断第几项是常数项运用方程的思想;找到这一项的项数后,实现了转化,体现转化的数学思想。
例3求 的展开式中, 的系数。
解题思路:原式局部展开后,利用加法原理,可得到展开式中的 系数。
板书
解:由于 ,则 的展开式中 的系数为 的展开式中 的系数之和。
而 的展开式含 的项分别是第5项、第4项和第3项,则 的展开式中 的系数分别是: 。
所以 的展开式中 的系数为
例4 如果在( + )n的展开式中,前三项系数成等差数列,求展开式中的有理项.
解:展开式中前三项的系数分别为1, , ,
由题意得2× =1+ ,得n=8.
设第r+1项为有理项,T =C · ·x ,则r是4的倍数,所以r=0,4,8.
有理项为T1=x4,T5= x,T9= .
3、课堂练习
1.(2004年江苏,7)(2x+ )4的展开式中x3的系数是
A.6 B.12 C.24 D.48
解析:(2x+ )4=x2(1+2 )4,在(1+2 )4中,x的系数为C ·22=24.
答案:C
2.(2004年全国Ⅰ,5)(2x3- )7的展开式中常数项是
A.14 B.-14 C.42 D.-42
解析:设(2x3- )7的展开式中的第r+1项是T =C (2x3) (- )r=C 2 ·
(-1)r·x ,
当- +3(7-r)=0,即r=6时,它为常数项,∴C (-1)6·21=14.
答案:A
3.(2004年湖北,文14)已知(x +x )n的展开式中各项系数的和是128,则展开式中x5的系数是_____________.(以数字作答)





