独立重复试验与二项分布 高三数学说课稿

减小字体 增大字体 作者:本站收集整理  来源:本站收集整理  发布时间:2010-09-29 07:56:23

       我顺势提出第二个问题:

问题2. 某同学玩射击气球游戏,若每次射击击破气球的概率为0.7,每次射击结果互不影响,现有气球3个, 恰好击破2个的概率是多少?设击破气球的个数为X,X的分布列怎样?

      进入第二个环节.
(二).自主探究  合作学习

设计意图: 前节课已经解决了相互独立事件概率的求法,这个问题大部分学生能够独立解决。解决问题过程中,允许讨论。老师巡视,参与其中,适当指导,解答学生提问.5-6分钟学生跃跃欲试,纷纷举手示意.选一过程写得较详细清楚的同学代表展示自己的解答过程.

(三).信息交流  揭示规律

问题2的解决:(学生拿自己的草稿在投影下讲)

分别记在第1,2,3次射击中,该同学击破气球为事件A1,A2,A3,那么射击3次,击破2个共有下面三种情况:,                                        种,每一种情况的概率为 ,因为三种情况彼此互斥,故3次射击击破2个的概率

x

0

1

2

3

p

X的分布列:

 

  

 

 

 

  而 + + +

   =

      设计意图: 上述解答是一个前面所学知识的应用过程 . 学生看到最后的结果,有一种``拨开云雾看清天”的感觉,这不就是二项式定理吗?学生热情高涨,课堂达到高潮,把对知识的学习掌握变成了对知识的探索 、发现、总结、创新的过程.

通过解决问题2,学生在老师引导下,由特殊到一般,由具体到抽象,由n次独立重复试验发生k次的概率,主动建构二项分布这一重要的离散型随机变量的分布列.攻破本节课的难点。

 

2.二项分布模型的构建(这一过程师生共同完成):

    若一次试验中事件A发生的概率为p,那么在n次独立重复试验中,事件A恰好发生K次的概率为.

    以事件A发生的次数X为随机变量,则X的分布列为:

 

上一页  [1] [2] [3] [4] [5] [6]  下一页

Tags:

作者:本站收集整理
  • 好的评价 如果您觉得此新频道好,就请您
      0%(0)
  • 差的评价 如果您觉得此新频道差,就请您
      0%(0)

新频道评论评论内容只代表网友观点,与本站立场无关!

   评论摘要(共 0 条,得分 0 分,平均 0 分) 查看完整评论