《不等式的基本性质》说课稿 鲁教版七年级数学(下)
一般学生会得到:不等式的两边都加上(或减去)同一个数,不等号的方向不变。
这时可提出问题:把“数”的范围扩大到整式可以吗?
学生讨论可能得出结论:可以,因为整式的值就是实数。
让学生归纳总结:不等式的两边都加上(或减去)同一个整式,不等号的方向不变。(教师板书:不等式的基本性质1)
引导学生说出符号语言:
如果
如果
[设计意图:类比等式的基本性质,研究不等式的性质,让学生体会数学思想
方法中类比思想的应用,并训练学生从类比到猜想到验证的研究问题的方法,
让学生在合作交流中完成任务,体会合作学习的乐趣。]
问题3:若不等式两边同乘以或除以同一个数,不等号的方向改变吗?
如不等式2<3,两边同乘以5,同除以5(即乘以
(结合不等式基本性质1的探索方法,学生可能很快就探索出不等式的基本性质2、3)
让学生归纳总结:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;
不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。
(教师板书:不等式的基本性质2,不等式的基本性质3)
引导学生说出符号语言:
如果a>b,c>0 ,那么ac>bc
如果a<b,c>0 ,那么ac<bc
如果a>b,c<0 ,那么ac<bc
如果a<b,c<0 ,那么ac>bc (教师板书)
[设计意图:类比等式的基本性质,研究不等式的性质,让学生体会数学思想
方法中类比思想的应用,并训练学生从类比到猜想到验证的研究问题的方法,
让学生在合作交流中完成任务,体会合作学习的乐趣。]
问题4:比较不等式基本性质与等式基本性质的异同?(学生小组合作交流。)
[设计意图:比较不等式基本性质与等式基本性质的异同,这样不仅有利于学生认识不等式,而且可以使学生体会知识之间的内在联系,整体上把握知识、发展学生的辨证思维。]
3、尝试练习,应用新知
小黑板出示下列练习
一:孙悟空火眼金睛:
1、如果x+5>4,那么两边都 可得 x >-1
2、在-7<8 的两边都加上9可得 。
3、在5>-2 的两边都减去6可得 。
4、在-3>-4 的两边都乘以7可得 。
5、在-8<0 的两边都除以8 可得
二:你来决策:
如果a>b,那么
1、a-3 b-3(不等式性质 )
2、
3、
4、a-b 0(不等式性质 )
[设计意图:数学练习是巩固数学知识,形成技能、技巧的重要途径,而机械、呆板的题海战术只能把学生在学习新知识时的热情无情地淹灭。两道练习以别开生面的形式出现,给学生一个充分展示自我的舞台,在情感态度和一般能力方面都得到充分发展,并从中了解数学的价值,增进了对数学的理解。]
出示例题
例 1 根据不等式的基本性质,把下列不等式化成 x<a或 x>a的形式:
(1) x -5 >-1 (2) - 2 x > 3
(先让学生思考,如何根据不等式的基本性质来进行变形,然后教师书写规范的步骤,并让学生讲解每一步的算理。)
解 (1)根据不等式的性质1,两边都加上5得:
x-5+5 > - 1+5





