《不等式的基本性质》说课稿 鲁教版七年级数学(下)

减小字体 增大字体 作者:本站收集整理  来源:本站收集整理  发布时间:2010-10-05 22:12:05

一般学生会得到:不等式的两边都加上(或减去)同一个数,不等号的方向不变。

这时可提出问题:把“数”的范围扩大到整式可以吗?

学生讨论可能得出结论:可以,因为整式的值就是实数。

让学生归纳总结:不等式的两边都加上(或减去)同一个整式,不等号的方向不变。(教师板书:不等式的基本性质1)

引导学生说出符号语言:

如果 ,那么

如果 ,那么  (教师板书)

[设计意图:类比等式的基本性质,研究不等式的性质,让学生体会数学思想

方法中类比思想的应用,并训练学生从类比到猜想到验证的研究问题的方法,

让学生在合作交流中完成任务,体会合作学习的乐趣。]

问题3:若不等式两边同乘以或除以同一个数,不等号的方向改变吗?

如不等式2<3,两边同乘以5,同除以5(即乘以 ),同乘以0,同乘以-5,同除以-5。你能得出什么结论?再举几例试试,验证你所得的结论正确吗?

(结合不等式基本性质1的探索方法,学生可能很快就探索出不等式的基本性质2、3)

让学生归纳总结:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;

不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。

(教师板书:不等式的基本性质2,不等式的基本性质3)

    引导学生说出符号语言:

如果a>b,c>0 ,那么ac>bc

如果a<b,c>0 ,那么ac<bc

如果a>b,c<0 ,那么ac<bc

如果a<b,c<0 ,那么ac>bc   (教师板书)

[设计意图:类比等式的基本性质,研究不等式的性质,让学生体会数学思想

方法中类比思想的应用,并训练学生从类比到猜想到验证的研究问题的方法,

让学生在合作交流中完成任务,体会合作学习的乐趣。]

问题4:比较不等式基本性质与等式基本性质的异同?(学生小组合作交流。)

[设计意图:比较不等式基本性质与等式基本性质的异同,这样不仅有利于学生认识不等式,而且可以使学生体会知识之间的内在联系,整体上把握知识、发展学生的辨证思维。]

  3、尝试练习,应用新知

小黑板出示下列练习

一:孙悟空火眼金睛:

1、如果x+5>4,那么两边都                 可得  x >-1

2、在-7<8  的两边都加上9可得              。

3、在5>-2  的两边都减去6可得                            。

4、在-3>-4  的两边都乘以7可得                           。

5、在-8<0   的两边都除以8 可得                     

二:你来决策:

 

如果a>b,那么

1、a-3    b-3(不等式性质         )

 

2、2a    2b(不等式性质         )

 

3、-3a    -3b(不等式性质         )

 

4、a-b    0(不等式性质         )

[设计意图:数学练习是巩固数学知识,形成技能、技巧的重要途径,而机械、呆板的题海战术只能把学生在学习新知识时的热情无情地淹灭。两道练习以别开生面的形式出现,给学生一个充分展示自我的舞台,在情感态度和一般能力方面都得到充分发展,并从中了解数学的价值,增进了对数学的理解。]

出示例题

例 1   根据不等式的基本性质,把下列不等式化成 x<a或 x>a的形式:

(1) x -5 >-1       (2) - 2 x > 3

(先让学生思考,如何根据不等式的基本性质来进行变形,然后教师书写规范的步骤,并让学生讲解每一步的算理。)

 

解  (1)根据不等式的性质1,两边都加上5得:

 

x-5+5 > - 1+5

上一页  [1] [2] [3]  下一页

Tags:

作者:本站收集整理
  • 好的评价 如果您觉得此新频道好,就请您
      0%(0)
  • 差的评价 如果您觉得此新频道差,就请您
      0%(0)

新频道评论评论内容只代表网友观点,与本站立场无关!

   评论摘要(共 0 条,得分 0 分,平均 0 分) 查看完整评论