《平面向量在代数中的应用》 高二数学说课稿
要求学生自主探索、相互讨论。
预计:学生思路分下列三种类型:(1)有根号想到两次平方分析;(2)由根号内的现性特征,联想向量的模概念,构造向量,将结论转化为向量表达式,从而揭示“两向量和与差的模与向量模的和与差的不等关系”本质;(3)由根号内的现性特征,联想两点间距离公式,构造点坐标,将结论转化为平面上三点间距离的不等关系,从而揭示“两线段长度之和(差)大于或等于(小于或等于)第三线段的长”本质。
分析:学生讨论三种方法的异同点,期望说出(1)是处理绝对值和根号的一般代数方法;而(2)(3)都是应用数形转化解决,体现本问题的特殊性,且强调(2)(3)两种方法解题原理相同……
总结用向量解决代数问题的步骤:
(1)构造向量,将已知条件或结论转化为向量表达式 (数----形);
(2)进行向量运算或向量性质的应用;
(3)将所得的结果转化为所求的结论(形----数).
老师板书示范后,引导学生讨论,条件不变的前提下,由于构造向量或向量性质应用的差异,会得到不同的结论,期望同学一题多变 ……
注意:“两向量和与差的模与向量模的和与差的不等关系”等号成立的条件,为下面突破难点作好铺垫。
练一练
由学生的错误答案
引导:当看到
出示问题2,即课本P50例3,让学生讨论总结“数量积的平方小于或等于模的平方的积”的应用,就证明了柯西不等式,此时预计学生比较活跃,课堂进入高潮……
并指出等号成立的充要条件.
预计:许多学生已观察出仍然是“数量积的平方小于或等于模的平方的积”的应用,揭示数学本质本质,体会柯西不等式所反映实数关系的奇妙性,感受一般与特殊关系。
注意:“数量积的平方小于或等于模的平方的积”中等号成立的条件,为下面练习铺垫,。………………………………【全文请点击下载】
点击下载此文件





