不等式的证明 综合法 高二数学说课稿
《不等式的证明(2)——综合法》说课
一、本节课在本章中的地位
综合法是不等式证明的一种方法,这种方法是:根据不等式的性质和已经证明过的不等式来进行。
综合法.从已知(已经成立)的不等式或定理出发,逐步推出(由因导果)所证的不等式成立.例如要证
综合法的证明过程是下一节课学习的不等式的证明的又一必须掌握的方法——分析法的思考过程的逆推,而分析法的证明过程恰恰是综合法的思考过程。
实际上在前面两个重要的不等式平方不等式和均值定理的证明及不等式的性质证明当中,我们已经运用了综合法,但当时只是没有提出或采用这个名字而已。本节课是不等式的证明的每第二节课,由于立方不等式已移至阅读材料当中,故例题只有一个,是运用平方不等式来作为基础工具。
二、本节课的教学重、难点
本节课的教学重点是运用综合法证明不等式。
教学难点是如何正确运用综合法证明不等式。用综合法证明不等式的逻辑关系是:(已知)——(逐步推演不等式成立的必要条件)(——结论) 即
由此可见,综合法是“由因导果”,即由已知条件出发,推导出所要证明的不等式成立。
难点突破方法:由于综合法不象比较法,它必须从某个不等式的性质和已经证明过的不等式出发,运用不等式的性质进行一系列的恒等变形,直到得出结论。
因此要求学生对所学习的不等式的5个定理,4个推论和不等式平方不等式和均值定理必须熟悉,在进行教学时,首先要与学生一起回顾前面所学不等式性质、定理,并板书在黑板上,便于学生直接运用,从而节约学习时间;其次,用综合法进行不等式的证明时,通常要观察所证的不等式的结构,找出它与前面所学不等式性质、定理在结构上的某些相似之处,所以又要注意引导学生学会从结构上进行观察,大胆猜测,小心求证,并以此为契机,复习掌握前面所学不等式性质、定理。
三、教学过程设计
①复习不等式的性质、平方不等式[如果
(说明复习两个不等式是为了例1的解决)
②提出问题:例1已知a,b,c是不全相等的正数,求证:
让学生思考,本题如何证明?用比较法?
(提出问题让学生感知比较法进行证明时,作差后的变形是难点,有没有其他更快的证明方法?当学生难于判断差与0的关系时,认识到学习新方法的必要性,从而激发学生的求知欲。)
出示本节课课题“不等式的证明(2)——综合法”
③引导学生观察所要证明的不等式的结构,思维来自观察,培养学生的观察能力,而这正是综合法的要点,由结构大胆猜测。
引导学生:从所要证的不等式的左边看,有三个单元结构,发现都有平方不等式的左边一样的结构,但右边系数是6,且为三个字母之积,又如何变出来?能否试试给出证明?
让学生通过自己运用所学知识,尝试,在尝试中学会知识,实践出真知。
④引导学生通过证明,总结这种方法与差比法证明不等式的区别在哪里?
证明:∵
∴
同理





