《数学归纳法及应用举例》高三数学说课稿
情景三(学生自己创设):学生共同回顾等差数列
2.学生观察、分析以上三个情景,提出与分析问题,得出结论。
3.结论:这些用有限多个特殊事例得出的结论,有的正确,有的不正确。因此不能作为论证的方法。
下面教师用教学语言讲述:
等差数列的通项公式也是由有限个特殊事例归纳出来的,也可能不正确,一但错误,我们已建立的数列大厦必将倒塌,必须对其进行抢救性证明,如何证明这类有关正整数的命题呢?
(二)探索解决问题的方法
1. 多媒体演示多米诺骨牌游戏。
师生共同探讨多米诺骨牌全部依次倒下的条件:
(1)第一块要倒下;
(2)当前面一块倒下时,后面一块必须倒下;
当满足这两个条件后,多米诺骨牌全部都倒下。
2.学生类比多米诺骨牌依顺序倒下的原理,探究出证明有关正整数命题的方法(建立数学模型)。
(1)n取第一个值
(2)假设 n=k(k
满足这两个条件后,命题对一切n
(三)方法尝试
师生共同用探究出的方法尝试证明等差数列通项公式。
其中假设n=k时等式成立,证明n=k+1时等式成立的证明目标和如何利用假设主要由学生完成。
(四)理解升华
1.置疑
对上面的证明方法,充分让学生置疑、提问。
2.论证(说理)
师生共同探讨数学归纳法的原理,理解他的严密性、合理性。从而由感性认识上升为理性认识。
本阶段用逻辑推理的形式展开研究:当一个命题满足上面(1)、(2)两个条件时
Tags:
作者:本站收集整理评论内容只代表网友观点,与本站立场无关!
评论摘要(共 0 条,得分 0 分,平均 0 分)
查看完整评论





