中查找“求动圆圆心的轨迹”更多相关内容
中查找“求动圆圆心的轨迹”更多相关内容- ·上一篇新频道:《苏州园林》说案
- ·下一篇新频道:函数y=Asin(ωx+φ)图象说课
求动圆圆心的轨迹
2、重点和难点
本节课的重点是动圆圆心轨迹的求法;难点是利用圆的定义和基本性质得到等价关系,从而列出方程.
二、 教学目标
根据以上分析和学生的具体的情况,确定本节课的教学目标如下:
1、知识目标
(1)掌握轨迹问题的一般求法;
(2)掌握圆的定义及其性质;
(3)掌握利用几何画板作动点轨迹.
2、能力目标 使学生在问题的研究过程中,进一步地领会求动点轨迹的思想方法,更深一步地了解、运用圆的定义和性质来分析问题的能力,培养学生的观察能力、空间想象能力,培养学生综合运用知识解决问题的能力.同时,提高学生几何画板的应用能力.
情感目标 通过利用几何画板的作图,增强问题的直观性,激励学生的学习兴趣和动机。特别是对抽象能力不强的学生有较大帮助,树立他们学好数学的信心,共同提高;运用辩证唯物主义思想:运动与静止的相互关系.
三、 学方法和教学手段的选用
根据本节课的内容和学生的实际水平,我采用的主要是启发式的教学方法法、计算机辅助教学、讲练结合的方法.
启发式的教学方法符合辩证叭物主义内因和外因相互作用的观点,符合教学论中的自觉性、积极性、巩固性、可接受性,教学与发展相结合,教师的主导作用与学生的主体地位相统一等原则.这种教学方法的关键是通过教学中的引导、启发、充分调动学生学习的主动性.
在教学中,我采用启发式的教学方法,引导学生探索动圆的性质,利用几何画板工具作出动点的轨迹,给抽象轨迹以直观感觉,努力提高学生的学习兴趣.通过讲练结合的方法引导学生去完成轨迹方程的推导,熟练公式,巩固圆的性质及定义.通过题组教学法,因材施教,发展学生等价转换、数形结合等思想,培养学生综合运用知识解决问题的意识.
四、 关于学习方法的指导
“授人以鱼,不如授人以渔”,我体会到,必须在传授知识给学生的同时,教给他们好的探索方法,也即让他们“会学习” .
首先,让学生根据条件作图,学生在作图时肯定要寻找作图的条件(这就是立方程的等价条件),再通过作出的图象引导学生如何求出轨迹的方程.这样,学生不仅学到了知识,而且通过作图,即熟练了几何画板这个工具又提高了学习兴趣,通过方程的推导,深化了学生对圆的认识,对数形结合思想的理解,提高了学生的认识问题和解决问题的能力.
五、 教学过程
课前准备
(1)将学生分成几个小组(4至5人一组);(2)从学校局域网或inter网下载几何画板软件并安装;(3)布置几个作图题,要求学生在兴趣小组活动时协商解决.
问题的引入
首先,提问学生圆的定义和基本性质.目的是让学生知道这节课所用的知识.
再次,给出学生要解决的问题,分成两问,第一问:试作出过定点a(6,0)且与圆
问题解决步骤
第一步作图:学生分小组讨论和作图(每个小组两台电脑).由于作图时学生可以讨论,在这种相对宽松的条件下学生的学习兴趣得到了很大的提高.老师巡视,辅导学生作图(主要目的是要学生得出动点的性质).展视学生成果,提问这是什么图形?(如果学生没能作出则展视事先准备的课件);





