人教必修2《直线与平面垂直的判定》 高一数学说课稿

减小字体 增大字体 作者:本站收集整理  来源:本站收集整理  发布时间:2010-09-30 17:41:00

 

  ④归纳直线与平面垂直的定义、介绍相关概念,并要求学生用符号语言表示。

 

(3)辨析讨论—深化概念

 

判断正误:

 

  ①如果一条直线垂直于一个平面内的无数条直线,那么这条直线就与这个平面垂直。

 

  ②若a⊥α,bα,则a⊥b。(学生利用铁丝和三角板进行演示,讨论交流。)

 

这一环节是本节课的基础。线面垂直定义比较抽象,若直接给出,学生只能死记硬背,这样,不利于学生思维能力的发展。如何使学生从“线面垂直的直观感知”中抽象出“直线与平面内所有直线垂直”是本环节的关键,因此,在教学中,充分发挥学生的主观能动性,先安排学生课前收集大量图片,多感知,然后,通过学生动手画图、讨论交流和多媒体课件演示,使其经历从实际背景中抽象出几何概念的全过程,从而形成完整和正确的概念,最后,通过辨析讨论加深学生对概念的理解。这种立足于感性认识的归纳过程,即由特殊到一般,由具体到抽象,既有助于学生对概念本质的理解,又使学生的抽象思维得到发展,培养学生的几何直观能力。

 

  2.直线与平面垂直的判定定理的探究

 

这个探究活动是本节课的关键所在,分三步进行:

 

  (1)分析实例—猜想定理

 

  问题①在长方体ABCD-A1B1C1D1中,棱BB1与底面ABCD垂直,观察BB1与底面ABCD内直线AB、BC有怎样的位置关系?由此你认为保证BB1⊥底面ABCD的条件是什么?

 

  问题②如何将一张长方形贺卡直立于桌面?

 

 

 

 问题③由上述两个实例,你能猜想出判断一条直线与一个平面垂直的方法吗?

 

  学生提出猜想:

 

  如果一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。

 

  (2)动手实验—确认定理

 

  折纸实验:过△ABC的顶点A翻折纸片,得到折痕AD,再将翻折后的纸片竖起放置在桌面上(BD、DC与桌面接触),进行观察并思考:

 

  问题④折痕AD与桌面垂直吗?如何翻折才能使折痕AD与桌面所在的平面垂直?

 

  问题⑤由折痕AD⊥BC,翻折之后垂直关系发生变化吗?(即AD⊥CD,AD⊥BD还成立吗?)由此你能得到什么结论?

 

 

 

学生折纸可能会出现“垂直”与“不垂直”两种情况,引导这两类学生进行交流,分析“不垂直”的原因,从而发现垂直的条件—折痕AD是BC边上的高,进而引导学生观察动态演示模拟试验,根据“两条相交直线确定一个平面”的事实和实验中的感知进行合情推理,归纳出线面垂直的判定定理,并要求学生画图,用符号语言表示。

 

(3)质疑反思—深化定理

 

  问题⑥如果一条直线与平面内的两条平行直线都垂直,那么该直线与此平面垂直吗?

 

 由于两条平行直线也确定一个平面,这个问题是学生会问到的。可以引导学生通过操作模型(三角板)来确认,消除学生心中的疑惑,进一步明确线面垂直的判定定理中的“两条”、“相交”缺一不可!

 

在本环节中,借助学生最熟悉的长方体模型和生活中最简单的经验,引导学生分析,将“与平面内所有直线垂直”逐步转化为“与平面内两条相交直线垂直”,并以此为基础,进行合情推理,提出猜想,使学生的思维顺畅,为进一步的探究做准备。

 

由于《课程标准》中不要求严格证明线面垂直的判定定理,只要求直观感知、操作确认,注重合情推理。因而,安排学生动手实验,讨论交流、为便于学生对实验现象进行观察和分析,自己发现结论,还增设了动态演示模拟试验,让学生更加清楚地看到“平面化”的过程。学生在已有数学知识的基础上,加之以公理的支撑,便可以确认定理。

 

教学中,让学生真正体会到知识产生的过程,有利于发展学生的合情推理能力和空间想象能力。与此同时,鼓励学生大胆尝试,不怕失败,教训有时比经验更深刻,使学生在自己的实践中感受数学探索的乐趣,获得成功的体验,增强学习数学的兴趣。在讨论交流中激发学生的积极性和创造性,为今后自主学习打下基础。

 

3. 直线与平面垂直的判定定理的初步应用………………………………【全文请点击下载word压缩文档】点击下载此文件

上一页  [1] [2] 

Tags:

作者:本站收集整理
  • 好的评价 如果您觉得此新频道好,就请您
      0%(0)
  • 差的评价 如果您觉得此新频道差,就请您
      0%(0)

新频道评论评论内容只代表网友观点,与本站立场无关!

   评论摘要(共 0 条,得分 0 分,平均 0 分) 查看完整评论