《数列》 高二数学说课稿

减小字体 增大字体 作者:本站收集整理  来源:本站收集整理  发布时间:2010-09-29 19:54:24

《数列》(第一课时)说课

江苏省武进高级中学  金林

一、教材分析:

“数列”是中学数学的重要内容之一。不仅在历年的高考中占有一定的比重,而且在实际生活中也经常要用到数列的一些知识。例如:储蓄、分期付款中的有关计算就要用到数列知识。

就本节课而言,在给出数列的基本概念之后,结合例题,指出数列可以看作定义域为正整数集(或它的有限子集)的函数。因此,本节课的内容,一方面是前面函数知识的延伸及应用,可以使学生加深对函数概念的理解;另一方面也可以为后面学习等差数列、等比数列的通项、求和等知识打下铺垫。所以本节课在教材中起到了“承上启下”的作用,必须讲清、讲透。

二、教学目标:

   根据上面对教材的分析,并结合学生的认知水平和思维特点,确定本节课的教学目标。

1、  知识目标:

(1)形成并掌握数列及其有关概念,识记数列的表示和分类,了解数列通项公式的意义。

(2)理解数列的通项公式,能根据数列的通项公式写出数列的任意一项。对比较简单的数列,使学生能根据数列的前几项观察归纳出数列的通项公式,并通过数列与函数的比较加深对数列的认识。

2、  能力目标:

培养学生观察、归纳、类比、联想等分析问题的能力,同时加深理解数学知识之间相互渗透性的思想。

3、  情感目标:

通过渗透函数、方程思想,培养学生的思维能力,使学生在民主、和谐的活动中感受学习的乐趣。通过介绍数列与函数间存在的特殊到一般关系,向学生进行辩证唯物主义思想教育。

三、重点、难点:

1、教学重点

理解数列的概念及其通项公式,加强与函数的联系,并能根据通项公式写出数列中的任意一项。

2、教学难点

根据数列前几项的特点,通过多角度、多层次的观察和分析,归纳出数列的通项公式。

四、教法学法

本节课以“问题情境——归纳抽象——巩固训练”的模式展开,引导学生从知识和生活经验出发,提出问题并与学生共同探索、讨论解决问题的方法,让学生经历知识的形成过程,从而理解更加透彻。

现代教学观明确指出:教师是主导,学生是主体,学生应成为学习的主人。根据本节内容及学生的认知规律,针对不同内容应选择不同的方法。对于国际象棋棋盘麦粒采用电脑动画演示,增强感性认识;所举的引例及数列的函数定义,可采用探索发现法;对通项公式及数列的分类等概念采用指导阅读法;对于难题(根据数列的前几项写出一个通项公式)采用讲练结合法。

“授人以鱼,不如授人以渔”,平时在教学中教师应不断指导学生学会学习。本节课从学生实际出发,创设情境,引导学生观察、分析,探索发现,归纳总结,培养学生积极思维的品质,加强主动学习的能力。

为了有效地突出重点,突破难点,增大课堂容量,提高课堂效率,本节课将常规教学手段与现代教学手段相结合,将引例、例题、练习等实物投影。

五、教学过程

1、创设情景,激发兴趣,引入新课

(1)电脑动画演示:国际象棋棋盘格子中放有麦粒的示意图,从而得到一组数:1,2,22,23…………263

    叙述故事:给你一张报纸,你可以用它登上月球,你相信吗?只要不断地将报纸对折42次以后,报纸的厚度就可以达到月球和地球的距离。

设计意图:以实例引入概念,再配以电脑动画,叙述小故事,增强了感性认识,调动学生学习新知识的积极性。

(2)投影演示,再观察以下几列数:

①某班学生的学号:1,2,3,4…………,50

②从1984年到2004年,中国体育健儿参加奥运会每届所得的金牌数:

15,5,16,16,28,32

③某次活动,在1km长的路段,从起点开始,每隔10m放置一个垃圾筒,由近及远各筒与起点的距离排成一列数:0。10。20。30,……1000

④放射性物质衰变,设原质量为1,则各年的剩留量依次为:1,0.84,0.842,0.843,……

2、归纳抽象,形成概念

(1)学生尝试叙述数列的定义:启发学生观察上述几组数据后,进行归纳总结定义:按一定次序排成的一列数,叫数列,便于培养学生的抽象概括能力。

举例1:1,3,5,7与7,5,3,1 这两个数列有何区别?

举例2:-1,1,-1,1,……是不是一个数列?

设计意图:使学生注意把数列中的数和集合中的元素区分开来:

①数列中的数是有顺序的,而集合中的元素是无序的。

②数列中的数可以重复出现,而集中的元素不能重复出现。

进一步加深学生对数列定义的理解。

(2)数列的项及项的表示方法: an

(3)数列的表示方法:可写成:a1,a2,a3,……,an……

或简记为:{an},注意an与{an}的区别

上述(2)(3)采用指导阅读法(书P106页第7节~第8节第一句话),对an与{an}的区别进行集体讨论归纳。

3、通项公式的探索

(1)    观察归纳定义

由学生观察引例中数列的项与它在数列中的位置(即项的序号)间的关系:

实物投影:

序号      1        2      3        ……  64

↓      ↓      ↓             ↓

项       1= 21-1   2=22-1  22 = 23-1    ……  263

       

从而可看出项与项的序号之间可用一个公式:an =2n-1表示,该公式叫数列的通项公式,然后归纳抽象出数列的通项公式的定义(略)。

(2)用函数观点看待数列:这是一个难点,讲解必须清楚、透彻。数列可看作是以自然数集或它的有限子集为定义域的函数,当自变量由小到大依次取值时对应的一列函数值(这是数列的本质),其图象是一群孤立的点,画图(棋盘麦粒这个数列)

设计意图:加深对函数概念的理解。

(3)数列的分类,并口答引例及数列①②③④分别归于哪类数列。

[1] [2]  下一页

Tags:

作者:本站收集整理
  • 好的评价 如果您觉得此新频道好,就请您
      0%(0)
  • 差的评价 如果您觉得此新频道差,就请您
      0%(0)

新频道评论评论内容只代表网友观点,与本站立场无关!

   评论摘要(共 0 条,得分 0 分,平均 0 分) 查看完整评论