小学六年级数学下册1-8单元教材分析
4.“估计—验证”探索圆锥的体积公式。
就小学生现有的知识,把圆锥转化成体积相等的其他物体有些困难。因此,教学圆锥体积公式采用的方法与圆柱不同
·认识等底、等高的圆锥与圆柱,估计圆锥体积是圆柱的几分之几。例5图示了一个圆柱和一个圆锥,指出它们的底面积相等,高也相等。从图画直观,学生能确定圆锥的体积比圆柱小,教材让学生估计这个圆锥的体积是圆柱的几分之几。这里的估计不要求准确,也不要求全体学生有相同的答案,说成
·通过实验,发现等底等高的圆柱与圆锥的体积关系。首先准备器材,找等底等高的圆柱、圆锥容器各一个,教材图示了比较底面积和比较高的方法。然后在圆锥容器里装满沙子,倒入空的圆柱容器里,看看几次正好倒满。从倒沙子实验得出圆锥体积是等底等高圆柱体积的
·利用圆柱体积算圆锥体积,推导圆锥的体积公式。上面实验的结论可以用数学式子表示:圆锥的体积=等底等高圆柱的体积×
·编排等底等高圆柱与圆锥的体积关系的专项练习。掌握圆锥体积计算方法的关键在理解和应用等底等高圆锥、圆柱的体积关系,即圆柱的体积是等底等高圆锥的3倍,圆锥的体积是等底等高圆柱的
5.测量形状不规则的物体的体积。
生活中有大量形状不规则的物体,它们的体积如何测量?实践活动《测量物体的体积》解决这个问题。
·转化成圆柱算体积。把土豆放入存水的圆柱容器,能测量体积。教材安排小组合作学习,先测量圆柱容器的底面积,以及放入土豆前的水面高度;再把土豆放进去,测量放土豆后的水面高度。学生能够从水面上升,体会那段圆柱的体积就是土豆的体积。进行这项活动要注意两点,一是在圆柱容器的里面测量它的底面直径和水面高度,并算出底面积。二是帮助学生理解水面高度变化与土豆体积的关系。
·利用质量与体积的比值算体积。同一种材料,物体的质量与体积的比值(即比重)是一定的,物体的质量除以比重的商是物体的体积。如铁的比重是每立方厘米7.8克,一块质量为780克的铁块的体积是780÷7.8=100(立方厘米)。这次实践活动的第二个内容就是应用这种关系算体积,分三步进行。第一步用测量土豆体积的方法分别测量两块铁块的体积,用天平称出这两块铁块的质量。第二步把两块铁块的体积和质量填入教材设计的表格,分别算出质量与体积的比值,发现比值是相同的。第三步用天平称出另一块铁块的质量,通过质量除以比重求出体积。开展这项活动也要注意两点,一是先测量的两块铁块的体积要尽量准确,否则,得不到“质量与体积的比值一定”。二是帮助学生理解质量除以比重的商是体积。
第三单元 比例
一、教学内容
本单元教学“数与代数”领域里的比例的意义、比例的性质、解比例;还教学“空间与图形”领域里的图形放大与缩小、比例尺的意义、解决与比例尺有关的实际问题。
把两个领域的知识结合起来教学,既能赋予比例丰富的现实意义,又能理解图形放大、缩小的数学含义,还能使解决比例尺的实际问题有更多的思路与方法。
全单元编排7道例题、三个练习,分成四段教学。
例1~例3、练习九,图形的放大与缩小、比例的意义;
例4~例5、练习十,比例的性质、解比例;
例6、例7、练习十一,比例尺的意义和解决实际问题;
“实践活动”进一步体验图形的放大与缩小。
二、教材编写特点和教学建议
1.在现实情境和画图活动中,教学图形放大与缩小的含义。
图形放大与缩小是图形的一种变化方式,研究的对象与内容十分具体,教学应在现实的情境中进行。
·联系“倍”和“比”的知识,揭示图形放大的含义。例1先教学图形的放大,在长方形画放大的情境中,要求学生说说“两幅画长的关系、宽的关系”。有些学生用“倍”描述,有些学生用“比”表示,都利用了已有的知识、经验。这里要注意的是,应该把放大后的画(第二幅画)与放大前的画(第一幅画)比。教材归纳学生的思考,指出长方形的每条边放大到原来的2倍,放大后的长方形与原来长方形对应边长的比是2︰1,就是把原来的图形按2︰1的比放大。在这一段话里,揭示了图形放大的具体含义,示范了图形放大的规范表述。
·促进认知迁移,体会图形缩小的含义。在初步理解长方形按2︰1的比放大以后,教材提问:如果把第一幅画按1︰2的比缩小,长和宽应是原来的几分之几?各是多少厘米?引导学生感受图形的缩小,初步形成图形缩小的概念。
教学时,可以把图形按2︰1的比放大与图形按1︰2的比缩小进行比较。突出比的前项指变化后的图形,后项指原来的图形。2︰1的前项大于后项,表示图形放大;1︰2的前项小于后项,表示图形缩小。





