小学六年级数学下册1-8单元教材分析

减小字体 增大字体 作者:本站收集整理  来源:本站收集整理  发布时间:2010-03-07 11:34:52

·排列数据,理解众数的意义。教材把表格里9人的发芽粒数依次排列,指出这些数据中“17出现的次数最多,叫做这组数据的众数。”在这句话里讲了众数的意义:出现次数最多的那个数;还含有求众数的方法:在一组数据中寻找出现次数最多的数。让学生在现实情境中意义建构众数的概念。

·求平均数,区别新旧概念。众数和平均数都是统计量,平均数是三年级教学的。教材要求学生算出“这组数据的平均数”,通过计算回忆平均数的知识,体会平均数与众数的意义不同,求法不同,从本质上区分这两个概念。

·联系实际、应用众数。第79页“练一练”第2题,如果把上周销售男鞋的尺码一双一双地记录下来,在这组数据中25.5出现的次数最多,有48次,因此25.5是众数,这个众数会影响鞋店今后的进货。

3.分析数据,认识中位数。

例3和例4教学中位数,前一道例题以形成概念为主,后一道例题教学算法。

·创设情境,产生需要。例3呈现一张九名男生的跳绳成绩记录单,对7号男生的成绩进行分析。有人利用平均数,指出7号男生跳的比平均数少,意味他的成绩不够好。有人把九名男生的跳绳下数从多到少排列,发现7号男生处在第三名,认为他的成绩不错。不同分析出现不同的评价,而且差异明显。“为什么跳的比平均数少,成绩还是第三名?”是许多学生的疑问,教学中位数就能解开这个疑。

·排列数据,讲解概念。一组数据的中位数,是指这组数据按大小顺序依次排列,处于最中间的那个数。这既是中位数的概念,也是找中位数的方法。教材把九名男生的跳绳成绩从大到小排列,很容易找到中间的数, 理解它就是中位数。

·评价7号男生的成绩,用中位数合适。九名男生中有2人的成绩十分突出,分别是182下和170下,这两个优异成绩拉高了全组的平均成绩。事实上,九人中只有2人的成绩在平均数之上,其余7人的成绩都低于平均数。可见,平均数在这里并不反映一组数据的实际状况,用中位数表示这组男生的跳绳水平比较合适。

一组数据的个数如果是偶数,按大小顺序排列,正中间有两个数。求这组数据的中位数的方法,是例4的教学内容。

·适时指点算法。例3初步教学中位数的意义和求法,例4寻找十名女生跳绳成绩的中位数,学生会主动把这些女生的跳绳下数按大小顺序排列。在找中位数时,发现这组数据一共10个,正中间有两个数,于是产生疑问“中位数是几呢?”教材适时指出:正中间有两个数的,中位数是这两个数的平均数。在教材的指点下,学生通过计算正中间的104和102的平均数,得到这组数据的中位数是103。

·用中位数分析、评价数据。求得中位数103,把10号女生的成绩同中位数相比,可以看到略小于中位数,表明这名女生的成绩在整体中的位置是较偏后的。仍然用中位数评价其他女生,可以判断各人的成绩在整体中的大致位置。

像这样用中位数进行数据分析,比平均数方便,有时比平均数合理。

4.选用合适的统计量,反映数据的实际状况。

到现在为止,陆续教学了三个统计量,分别是平均数、众数、中位数。有些时候,三个统计量都能确切反映数据的基本情况。也有些时候,统计量会引起误解,有误导作用。所以,选择合适的统计量是十分重要的。

选用统计量又是比较复杂而困难的。本单元只是初步教学选用,要求不高,难度不大。

·如果一组数据的众数出现的次数很多,这时的众数具有代表性。第82页练习十六第1题里,十名男生身高数据的众数是153,众数在这组数据里出现了3次。十名女生身高数据的众数是148,众数在这组数据里出现5次。显然,女生身高的众数更具有代表性。

·如果一组数据里有极端数据,这时的中位数具有代表性。这里所谓的极端数据,是指和其他数据相比,明显大许多或小许多的数。极端数据影响了平均数的代表性,会把平均数拉大或者拉小。第81页“练一练”2位同学家庭住房面积分别是43平方米和50平方米,比其他同学家庭住房面积小得多。因此,九位同学家庭平均住房面积只有77平方米,低于中位数84。如果选一个统计量表示这九位同学家庭的住房情况,中位数是比较合适的。第81页第2题里,A飞机的飞行时间特别短,是一个极端数据。这个数据使八架飞机的飞行时间的平均数明显小于中位数,也使平均数失去了应有的代表性。如果A飞机不飞,其余七架飞机的飞行时间里没有极端数据,平均数和中位数应该比较接近,都可以用来表示七架飞机的飞行水平。第3题里工资的平均数、中位数和众数分别是1800、1100、1000,平均数远远大于中位数和众数,是由于总经理与副总经理的工资远远高于其他人。反映员工工资实际情况的统计量应该选中位数或者众数。 

 

第八单元 总复习

本单元全面、系统地复习小学阶段教学的数学知识,内容很多。仍然分四个领域编排,每个领域又分成若干段,有利于突出各段的复习重点,进一步加强基础知识、基本技能和重要的思想方法。

复习每段的知识,设计了两个栏目。先是“整理与反思”提出几个问题引导学生回忆这段里的主要知识内容,沟通知识间的联系,优化、完善认知结构。然后是“练习与实践”,安排一些习题让学生解答,更好地掌握、应用知识,提高解决问题的能力。两个栏目既是教材的编写设计,也是复习的主要活动。

一、“数与代数”领域的内容分数的认识、数的运算、式与方程、正比例和反比例四段编排。

1.“数的认识”复习整数、小数、分数,百分数的意义和计数方法,这些数的联系与区别;分数性质、小数性质,分数与除法的关系;有关倍数和因数的知识;数的实际应用。

·在数轴上填整数、小数、分数,理解数的意义和相互关系。第83页第1题在数轴上填数,可以看到:负数与正数是方向相反的数,正数大于0,页数小于0;把整数1平均分成4份,表示这样的一份或几份的数是分数;分子是分母倍数的假分数可以与整数相互改写;分子不是分母倍数的假分数可以与小数相互改写。

·结合具体素材读、写多位数,改变数的计数单位,求近似数。第6题通过写多位数,复习十进制计数法,包括计数单位、数位顺序、数位分级、多位数的组成等。第9题把读多位数、改变多位数的计数单位、求多位数的近似数以及比较多位数的大小结合起来,进一步突出数的意义。读多位数一般先分级,还要遵循读数的规则,尤其是数里的0的读法规定。改变多位数的计数单位与求多位数的近似数能方便应用和表示,改变计数单位没有改变数的大小,求近似数一般使用四舍五入法。比较数的大小可以凭数感,也可以分析数的组成,两者结合效果会更好些。四个省的面积用平方千米为单位,用到整数;用万平方千米为单位,用到小数。这里还带着复习小数的知识,包括计数方法、读写方法、比较大小的方法等。

·利用分数与除法的关系、分数性质、小数性质改写数与式。第7、8两题移动小数点的位置,计算小数乘(或除以)10、100、1000,这些知识常用于名数的化与聚,还是小数乘法与整数乘法的联结点。第11题先复习分数和除法的关系,分数的基本性质。再应用这些知识进行小数、分数、百分数的相互改写。

上一页  [4] [5] [6] [7] [8] [9] [10] [11] [12]  下一页

Tags:

作者:本站收集整理
  • 好的评价 如果您觉得此新频道好,就请您
      0%(0)
  • 差的评价 如果您觉得此新频道差,就请您
      0%(0)

新频道评论评论内容只代表网友观点,与本站立场无关!

   评论摘要(共 0 条,得分 0 分,平均 0 分) 查看完整评论