《两角和与差的正弦、余弦、正切》 高一数学说课稿

减小字体 增大字体 作者:本站收集整理  来源:本站收集整理  发布时间:2010-09-30 07:56:47

[说课稿]

两角和与差的正弦、余弦、正切(第一课时)

    两角和与差的余弦这一节,分两个课时,我现在要说的是第一课时,重点是公式的推导,其次是它的基础一些的简单应用。至于结合同角三角公式的应用、公式的变用、活用等提高练习则留在第二课时进行。  

一、       教材分析

教材的地位和作用:本节课教学内容是高一(下)第四章4.6节第一课时(两角和与差的余弦)。本节内容是三角恒等变形的基础,是正弦线、余弦线和诱导公式等知识的延伸,同时,它又是两角和、差、倍、半角等公式的“源头”。两角和与差的正弦、余弦、正切是本章的重要内容,对于三角变换、三角恒等式的证明和三角函数式的化简、求值等三角问题的解决有着重要的支撑作用。本课时主要讲授平面内两点间距离公式、两角和与差的余弦公式以及它们的简单应用。这节内容在高考中不但是热点,而且一般都是中、低档题,是一定要拿到分的题。  

教学重点:两角和与差的余弦公式的推导与运用。      

教学难点:余弦和角公式的推导以及应用,学会恰当代换、逆用公式等技能。

二、教学目标

(一)知识目标:

1、掌握利用平面内两点间的距离公式进行C(α+β)公式的推导;

2、能用代换法推导C(α-β)公式;

3、初步学会公式的简单应用和逆用公式等基本技能。

(二)能力目标:

1、通过公式的推导,在培养学生三大能力的基础上,着重培养学生获得数学知识的能力和数学交流的能力;

2、通过公式的灵活运用,培养学生的转化思想和变换能力。

(三)情感目标:

1、通过观察、对比体会公式的线形美,对称美

2、通过教师启发引导,培养学生不怕困难,勇于探索勇于创新的求知精神。

三、学情分析:

根据现在的学生知识迁移能力差、计算能力差的特点,第一节课不要太多公式应用。

四、教法分析

1、创设情境----提出问题----探索尝试----启发引导----解决问题。

引导学生建立一直角坐标系xOy,同时在这一坐标系内作单位圆O,并作出角 ,使角 的始边为Ox,交圆O于点 ,终边交圆O于点 ;角 的始边为O ,终边交圆O于 ,角 的始边为O ,终边交圆O于点 ,并引导学生用 的三角函数标出点 的坐标。并充分利用单位圆、平面内两点的距离公式,使学生弄懂由距离等式 化得的三角恒等式,并整理成为余弦的和角公式,从而克服本课的难点。

2、教具:多媒体投影系统。(多媒体系统可以有效增加课堂容量,色彩的强烈对比可以突出对比效果;动画的应用可以将抽象的问题直观化,体现直观性原则。)

五、       学法指导

1、能灵活求写角 的终边与单位圆的交点坐标 ,并结合平面几何知识推证出公式

[1] [2]  下一页

Tags:

作者:本站收集整理
  • 好的评价 如果您觉得此新频道好,就请您
      0%(0)
  • 差的评价 如果您觉得此新频道差,就请您
      0%(0)

新频道评论评论内容只代表网友观点,与本站立场无关!

   评论摘要(共 0 条,得分 0 分,平均 0 分) 查看完整评论