中学数学教育中数学观念的培养
中学数学教育中数学观念的培养
北师大实验中学 张继林
一、问题的提出
《中学数学教学大纲》明确指出,中学数学教育的目的是:使学生学好从事社会主义现代化建设和进一步学习现代科学技术所必需的数学基础知识和基本技能,培养学生的运算能力、逻辑思维能力和空间想象能力,以逐步形成运用数学知识来分析问题和解决实际问题的能力。要培养学生对数学的兴趣,激励学生为实现四个现代化学好数学的积极性,培养学生的科学态度和辩证唯物主义的观点。
普通教育的目的,在于养成学生许多各种不同的品质,可以按照一定条件把这些品质分
为两个范畴:一般的和特殊的。属于一般的品质,它不仅是在某一学科的教学的过程中,而
且是在学校全部的教学和教育过程中,乃至是在学生的全部生活过程中形成的。属于一般
品质的有,辩证唯物主义世界观和思维,记忆力,注意力,言语的一般发展水平,道德理想,
审美能力等等。
在这里我思考的问题是:有哪些特殊的品质对于学生个性的全面发展和社会成熟来说
是必须的。中学的数学教育就是为了形成这些品质。
布鲁纳这样写道:“在评价数学课程的时候,通过数学课所传授的专业知识的重要程度,并不如它提供的智慧课,也不如学生对数学课所传授的知识的信任感。实际上两个目的密不可分,缺少一个,另一个就不能达到。这门具体课程,就象其他任何课程一样,它的真正内容就是人,作为生物的人的本性以及正在形成和将形成人类品质的那些因素”。
那些只能在数学教学过程中养成的特殊的品质有:建立现实的现象或过程的数学模型
的能力,运用数学的方法分析现象的习惯和能力;掌握研究某些数学模型的工具等等。为了
培养学生的这些特殊品质,就要求在数学教学过程中,使学生掌握数学知识和以这些知识为
基础的技能技巧形成一个系统,以便使学生:
①科学地、正确地了解数学反映自然、社会和生产中数量关系和空间形式的最简单的
法则的特点,并对这些知识的历史、来源和发展有清楚的认识;
②清楚地懂得数学中采用科学研究和证明的基本方法的实质;
③能够运用掌握的数学知识解决一些实际问题。
教育的根本宗旨是培养人,确切地说,是为未来培养人。因此就不能仅教给学生知识。
技能,更重要的是教会学生思维,培养他们的能力。而数学观念的培养,就能达到这一目
的。所谓数学观念,也就是人们常说的数学头脑、数学教养。准确地说,是指用数学的思维
方式去考虑问题,处理问题的自觉意识或思维习惯。比如;推理意识、整体意识、抽象意识、
化归意识等等。
为达到数学教学目的,需取决于下列因素:
①教学内容、知识的序列如何安排,知识的深度和广度、技能技巧要求的程度。
②教学中理论联系实际的程度,特别是抽象的数学概念的形成以及其它的数学知识发
生和发展的过程的教学的情况。
③在课程体系中数学和其它学科的关系。
④教师运用的数学方法是否得当。
⑤学生对待数学学习的态度和方法。
二、数学观念的具体内容及教育作用
数学观念与数学气质是不尽相同的。数学气质是指具有数学天才的人身上具有的独
特的心理品质。它表现为力求把周围的现象数学化,总是处处注意现象的数学因素,注意
空间和数量的关系、联结及各种函数的依存关系,总之是通过数学的眼光来看世界。它是数
学能力强的人所具有的一种特性。而数学观念是任何一个学生经过学习训练以后都可形
成的运用数学思维方式的习惯。具有数学气质的人一定有数学观念,反之则不然。
要理解数学观念的内容,先要知道所谓数学思维。奥加涅认为真正完美的数学思维首
先是辩证的思维,它又是自然科学的思维,即具有科学思绪的素质,如灵活性、独创性』、深刻性、目的性、合理性、概括性等等。数学思维的特点不仅表现为它具有科学思维的全部素质因素。还表现为它有自身的独特形式,即具体思维和抽象思维,函数思维,直觉思维等。对于数学思维的特点,数学家莫洛德希认为:能把不同内容的纯粹形式抽象出来,这就是数学思维的特征。柯尔莫哥罗夫认为:数学思维的特点是连续的。适当分解的逻辑推理的艺术。
欣钦则认为是:推理的逻辑方案,推理过程的准确的分解。格涅坚科认为是:数学思维经常
表现为所谓数学能力,纯粹的逻辑论证的习惯。
综上所述,数学思维是具有辩证思维、抽象思维、逻辑思维、直觉思维等思维的特征且
反映数学特点的思维。进行数学思维离不开推理,抽象概括,也离不开全面的看问题及对 问题进行转化。因此数学观念至少可以包括整体意识、抽象意识、推理意识与化归意识。





