如何面对策略的多样性——五下《最大公因数》的教学反思
如何面对策略的多样性——五下《最大公因数》的教学反思
教材共提供了三种不同的方式求两个数的最大公因数,方法一:分别写出两个数的因数,再找最大公因数;方法二:先找一个数的所有因数,再看哪些因数是另一个数的因数,最后从中找出最大的;方法三:用分解质因数的方法找两个数的最大公因数。除此之外,许多在校外培优的学生还会用短除法求最大公因数。这么多方法,教师应该向学生推荐哪种呢?教材中补充拓展的分解质因数方法学生是否都应掌握呢?短除法需要补充介绍吗?
方法一与方法二相比,由于第一种方法便于观察比较,十分直观。因此,在课堂教学中许多学生暗暗地就选择了它。看来,实践已经成为了“试金石”。
方法二与方法三相比,在数据偏大且因数较多时,如果用分解质因数的方法来求最大公因数不仅正确率高,而且速度也会大幅提高。如在作业中遇到找42和54、24和36的最大公因数时,学生往往会主动选择此法。由此看来,用分解质因数的方法来求最大公因数虽然作为教材中的拓展内容,但在教学中,教师不能仅仅只是介绍,还有必要让学生们掌握这种方法技能。
方法三与方法四的原理是一致的,只是短除法是分解质因数的简便书写形式。但两种方法在实际应用中还是略有区别。如当遇到求“5和8”的最大公因数时,如果用分解质因数的方法可能就会遇到困难。因为5是质数,无法分成若干个质数相乘的形式。这时如果学生不会短除法,就只能用第一或第二种方法了。而短除法除以的数不受质数的限制,可以是1,也可以是合数。当学生能够一眼观察出两个数公有的较大因数时,可直接将其作为除数。
短除法求最大公因数这么简便,且适用范围广,作为教师是否也应相应补充并让广大学生掌握呢?短除法求最大公因数一直要除到所得的商是互质数时为止。如果用此法,学生必须首先认识“互质数”,并能正确判断。虽然有关“互质数”的内容教材83页“你知道吗”中有所涉及,相应知识的考查在练习十五第6题中也有所体现,但我害怕学生与“质数”的概念发生混淆,因此准备将这些内容放到下次再教时补充介绍。短除法也只有等到再教时,给学生补充介绍了。
至于学生选用哪种策略找两个数的最大公因数,我并不强求。从作业反馈情况来看,学困生更喜欢方法一,中等生偏爱方法三,而校外培优的学生则普遍采用方法四。
作业也暴露出学生中存在的一些问题。如没有养成先观察数据特点,然后再动笔的习惯。如两个数正好成倍数关系时,许多学生仍旧按部就班地采用一般策略来解决,全班只有1/5不到的学生能够根据“当两个数成倍数关系时,较小数就是它们的最大公因数”的规律快速找到最大公因数。在这一方面,教师在教学中要率先垂范,做好榜样。在巩固练习过程中,也应加强训练,每次动笔练习之前补充一个环节——观察与思考。使学生除了掌握基本策略方法外,还能灵活快捷地求出一些特例来。





