哥德尔的发现——意想不到的结果(二)

减小字体 增大字体 作者:本站收集整理  来源:本站收集整理  发布时间:2009-09-30 08:12:05

2、1930年数理逻辑的状况

  1930年前,整个数学界是非常乐观的:希尔伯特的思想占统治地位;数学是建立在集合论和数理逻辑两块基石之上;康托尔的朴素集合论已被公理集合论所代替,从而消除了悖论;选择公理是一个很好的工具,数学中许多部门都要用到它;连续统假设仍然是悬案,不过希尔伯特多次觉得自己已接近解决这个难题,看来前景是乐观的;大部分数学可以建立在谓词演算的基础上,而一阶谓词演算的公理系统是无矛盾的,尽管其完全性仍有待证明;整个数学的基本理论是自然数的算术和实数理论,它们都已经公理化。这些公理系统应该是无矛盾的、完全的,如果它们能够得证,并且集合论公理系统也能得到同样的结果,那么整个数学就比较牢靠了。

  为了不使一小撮直觉主义者指手划脚、评头品足,希尔伯特提出他的计划:把理论系统形式化,然后通过有限多步证明它们没有矛盾。他信心十足,在1930年9月东普鲁士哥尼斯堡的科学会会议上,他批判了不可知论。

  1928年希尔伯特提出四个问题:

  1)、分析的无矛盾性。1924年阿克曼和1927年冯·诺依曼的工作使希尔伯特相信只要一些纯算术的初等引理即可证明。1930年夏天,哥德尔开始研究这个问题,他不理解希尔伯特为什么要直接证明分析的无矛盾性。哥德尔认为应该把困难分解:用有限主义的算术证明算术的无矛盾性,再用算术的无矛盾性证明分析的无矛盾性,哥德尔由此出发去证明算术的无矛盾性而得出不完全性定理。

  2)、更高级数学的无矛盾性,特别是选择公理的无矛盾性。这个问题后来被哥德尔在1938年以相对的方式解决。

  3)、算术及分析形式系统的完全性。这个问题在1930年秋天哥尼斯堡的会议上,哥德尔已经提出了一个否定的解决,这个问题的否定成为数理逻辑发展的转折点。

  4)、一阶谓词逻辑的完全性。这个问题已被哥德尔在1930年完全解决。

  这样一来,哥德尔的工作把希尔伯特的方向扭转,使数理逻辑走上全新的道路。[1][2][3]

Tags:

作者:本站收集整理
  • 好的评价 如果您觉得此文章好,就请您
      0%(0)
  • 差的评价 如果您觉得此文章差,就请您
      0%(0)

文章评论评论内容只代表网友观点,与本站立场无关!

   评论摘要(共 0 条,得分 0 分,平均 0 分) 查看完整评论