文明古国的早期数学(3)

减小字体 增大字体 作者:本站收集整理  来源:本站收集整理  发布时间:2009-10-11 08:47:59

 (三)古代印度篇——佛掌上的明珠

  古代印度是个信奉佛教的国度,而古印度人对古代数学的贡献,就像佛掌上的明珠那样耀眼和引人注目。

  在公元200年到1200年之间,古印度人就知道了数字符号和0符号的应用,这些符号在某些情况下和现在的数字很相近。此后,印度数学引进十进制的数字,同样的数字在不同的位置表示完全不同的含义,这样就大大简化了数的运算,并使计数法更加明确。比如,古巴比伦的记号▼既可以表示1,也可以表示1/60, 而在古印度人那里,符号1只能表示1个单位,要表示十、百等,必须在符号1的后面加上相应个数的符号0。这实在是个了不起的发明,以致于到了现代,人们在计数的时候依然沿用这种方法。

  古印度人很早就会用负数表示欠债和反方向运动。他们还接受了无理数的概念,在实际计算的时候,把适用于有理数的计算方法和步骤运用到无理数中去。另外,他们还解出了一次方程和二次方程。

  印度数学在几何方面没有取得大的进展,但古印度人对三角学贡献很大。这是他们热衷于研究天文学的副产品。如在他们的计算中,用到了三种量——一种相当于现代的正弦,一种相当于现代的余弦,还有一种称为“正矢”,在数量上等于1-cosα,这个三角量现在已经不用了。他们还知道一些三角量之间的关系, 比如“同角正弦和余弦的平方和等于1”等等,古印度人还会利用半角表达式计算某些特殊角的三角值。

  古印度人在数学史上的伟大贡献,永远被后人景仰和传诵。[1][2][3][4][5]

Tags:

作者:本站收集整理
  • 好的评价 如果您觉得此文章好,就请您
      0%(0)
  • 差的评价 如果您觉得此文章差,就请您
      0%(0)

文章评论评论内容只代表网友观点,与本站立场无关!

   评论摘要(共 0 条,得分 0 分,平均 0 分) 查看完整评论