“古典概型”教学设计(1)

减小字体 增大字体 作者:本站收集整理  来源:本站收集整理  发布时间:2009-08-27 08:26:04
深化巩固对古典概型及其概率计算公式的理解,和用列举法来计算一些随机事件所含基本事件的个数及事件发生的概率。培养学生运用数形结合的思想,提高发现问题、分析问题、解决问题的能力,增强学生数学思维情趣,形成学习数学知识的积极态度。

  通过观察对比,发现两种结果不同的根本原因是——研究的问题是否满足古典概型,从而再次突出了古典概型这一教学重点,体现了学生的主体地位,逐渐养成自主探究能力。

师生活动:

(1)教师给出问题,学生思考求解。

(2)教师将学生的结果汇总展示,学生给出的答案可能会有两种,然后引导学生分析原因,寻找解答中存在的问题。其中这两种答案分别对应了解题中的两种处理方法:把骰子标号进行解题和不标号进行解题,可以提示学生先把这两种方法下的基本事件全部列出来,然后验证是否为古典概型。

(3)学生思考、讨论,列出两种方法下的基本事件,发现基本事件的总数不相等。

(4)教师通过模拟和分析两种方式中每个基本事件的等可能性,引导学生发现在第二种情况下每个基本事件不是等可能的,不是古典概型,因此不能用古典概型计算公式。

(5)师生共同总结解题步骤:

     列举基本事件(验证基本事件是否有限,所有基本事件出现是否等可能);

     列举目标事件所包含的基本事件;

     利用公式进行计算。

问题4:把例3和例1作比较,你能找出它们的联系和区别吗?

设计意图:通过比较,培养学生从不同的角度观察问题的能力,辩证地看待问题,加深对古典概型的理解。

师生活动:学生观察、比较、交流,教师总结:

例3中列举基本事件时考试是有序的、数字可以重复出现的,而例1是无序的、字母不可能重复出现的。例1也可以从有序的角度考虑:如我们也可以把所有的基本事件列为:(a,b,(a,c),(a,d),(b,a),(b,c),(b,d),(c,a),(c,b),(c,d),(d,a),(d,b),(d,c)

四)循序渐进,例题延伸

问题1:假设储蓄卡的密码由4个数字组成,每个数字可以是012…,9十个数字中的任意一个。假设一个人完全忘记了密码,问他到自动提款机上随机式一次密码就能取到钱的概率是多少?

设计意图:选用具有现实意义的例题,激发学生的学习兴趣,培养其运用数学知识解决实际问题的能力。

师生活动:教师要引导学生注意题目的前提是“完全忘记了自己的储蓄卡密码”,在这种前提下才是古典概型问题,才能用古典概型公式解决问题。

学生思考、讨论、交流,在教师的指导下各自解题。

教师对学生的结果进行评价和完善,同时让学生理解为什么自动取款机不能无限制地让用户试密码,用身份证上的号码作密码不安全等现象。

上一页  [1] [2] [3] [4] [5] [6] [7] [8]  下一页

Tags:

作者:本站收集整理
  • 好的评价 如果您觉得此文章好,就请您
      0%(0)
  • 差的评价 如果您觉得此文章差,就请您
      0%(0)

文章评论评论内容只代表网友观点,与本站立场无关!

   评论摘要(共 0 条,得分 0 分,平均 0 分) 查看完整评论