第十四讲 二次函数的同象和性质(学生版) 中考数学考前回归专题复习 (知识回顾+考点例析+真题过关,详解).doc
2013年中考数学专题复习第十四讲 二次函数的同象和性质
【基础知识回顾】
一、 二次函数的定义:
一、 一般地如果y= (a、b、c是常数a≠0)那么y叫做x的二次函数
【名师提醒: 二次函数y=kx 2+bx+c(a≠0)的结构特征是:1、等号左边是函数,右边是 关 于 自 变 量x 的 二 次 式,x的 最 高 次 数 是 , 按 一次排列 2、强调二次项系数a 0】
二、二次函数的同象和性质:
1、二次函数y=kx 2+bx+c(a≠0)的同象是一条 ,其定点坐标为 对称轴式
2、在抛物y=kx 2+bx+c(a≠0)中:1、当a>0时,y口向 ,当x<- 时,y随x的增大而 ,当x 时,y随x的增大而增大,2、当a<0时,开口向 当x<- 时,y随x增大而增大,当x 时,y随x增大而减小
【名师提醒:注意几个特殊形式的抛物线的特点
1、y=ax2 ,对称轴 定点坐标
2、y= ax2 +k,对称轴 定点坐标
3、y=a(x-h) 2对称轴 定点坐标
4、y=a(x-h) 2 +k对称轴 定点坐标 】
三、二次函数同象的平移
【名师提醒:二次函数的平移本质可看作是定点问题的平移,固然 要掌握整抛物线的平移,只要关键的顶点平移即可】
四、二次函数y= ax2+bx+c的同象与字母系数之间的关系:
a:开口方向 向上则a 0,向下则a 0 |a|越大,开口越
b:对称轴位置,与a联系一起,用 判断b=0时,对称轴是
c:与y轴的交点:交点在y轴正半轴上,则c 0负半轴上则c 0,当c=0时,抛物点过 点
【名师提醒:在抛物线y= ax2+bx+c中,当x=1时,y= 当x=-1时y= ,经常根据对应的函数值判考a+b+c和a-b+c的符号】
【重点考点例析】
考点一:二次函数图象上点的坐标特点
例1 (2012•常州)已知二次函数y=a(x-2)2+c(a>0),当自变量x分别取 、3、0时,对应的函数值分别:y1 ,y2,y3,,则y1,y2,y3的大小关系正确的是( )
A.y3<y2<y1 B.y1<y2<y3 C.y2<y1<y3 D.y3<y1<y2
对 应训练
1.(2012•衢州)已知二次函数y= x2-7x+ ,若自变量x分别取x1,x2,x3,且0<x1<x2<x3,则对应的函数值y1,y2,y3的大小关系正确的是( )
A.y1>y2>y3 B.y1<y2<y3 C.y2>y3>y1 D.y2<y3<y1
考点二:二次函数的图象和性质
例2 (2012•咸宁)对于二次函数y=x2-2mx-3,有下列说法:
①它的图象与x轴有两个公共点;
②如果当x≤1时y随x的增大而减小,则m=1;
③如果将它的图象向左平移3个单位后过原点,则m=-1;
④如果当x=4时的函数值与x=2008时的函数值相等,则当x=2012时的函数值为-3.
其中正确的说法是 .(把你认为正确说法的序号都填上)考点:二次函数的性质;二次函数图象与几何变换;抛物线与x轴的交点.
对应训练
2.(2012•河北)如图,抛物线y1=a(x+2)2-3与y2= (x-3)2+1交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于点B,C.则以下结论:
①无论x取何值,y2的值总是正数;②a=1;③当x=0时,y2-y1=4;④2AB=3AC;
其中正确结论是( )
A.①② B.②③ C.③④ D.①④ ……………………………【全文请点击下载word压缩文档】点击下载此文件