高考数学猜题1:平面向量解题与应用
12.在△ABC中,-=-,-=-又E点在BC边上,且满足3-=2-,以A,B为焦点的双曲线过C,E两点,(1)求此双曲线方程,(2)设P是此双曲线上任意一点,过A点作APB的平分线的垂线,垂足为M,求M点轨迹方程。
解:本题只解第一问,在这里向量的应用是很有新意的。
(1)以线段AB中点O为原点,直线AB为x轴建立直角坐标系,设A(-1, 0) B(1, 0)作CO⊥AB于D
由已知-=-
∴|-|cosA=-
∴|-|=-
又同理-=-
∴|-|=-
设双曲线---=1(a>0,b>0) C(--,h) E(x1,y1)
∵3-=2-
-
E,C在双曲线上
-
∴双曲线为7x2--y2=1
Tags:
作者:教育文稿网评论内容只代表网友观点,与本站立场无关!
评论摘要(共 0 条,得分 0 分,平均 0 分)
查看完整评论





