小学五年级数学 下册1-5单元教材分析
另外,这道例题的8个等式中,有7个让学生在圆圈里填写“=”组成等式,这是引导学生切实关注等式有没有变化。右边的四个等式分别让学生在括号里填出同时加上或减去的数,有利于发现等式的性质。
例5教学等式的另一个性质。教材注意利用学生前面学习等式性质的经验,在感知天平的直观情境表示出等式性质的一个实例后,再让学生写一个等式,通过比较、概括与交流,得出“等式的两边都乘或除以相同的数,结果仍然是等式”的结论。教学时有两点应注意: 一是让学生正确理解图意。上面一组天平图的左边原来是一个质量为x克的物体,又添上一个质量相同的物体;右边原来是一个20克的砝码,又添上一个同样的砝码。这表示天平左右两边物体的质量都乘2。下面一组天平图左边原来是3个质量都为x克的物体,现在只剩下1个这样的物体;右边原来是3个20克的砝码,现在只剩下1个20克的砝码。这表示天平左右两边物体的质量都除以3。二是等式两边同时除以的那个数不能是0,这一点学生能够接受。因为前面的教学中,已经多次提到除数不能是0。
(2) 应用等式的性质解方程。
例4和例6教学解方程,解方程的关键是方程的两边都加(减)几、乘(除以)几,教材对此有精心的设计。例4看图列出方程,学生先从图中能得到求x值的启示: 只要在天平的左右两边各去掉10克的砝码。联系等式的性质与方程x+10=50的特点,理解“方程两边都减去10”的道理: 等式的两边都减去10,左边就剩下x,x的值只要通过右边的计算就能得到。例6在列出方程以后,让学生联系已有的解方程经验和有关的等式性质,思考“方程两边都要除以几”这个问题,并解这个方程。这些设计都体现了从学生实际出发,让学生主动学习的教育理念。另外,例4的编写还注意了三点: 一是示范了解方程的书写格式,强调等式变换时,各个等式的等号要上下对齐,教学时必须严格遵循;二是求得x=40后,通过“是不是正确答案”的质疑,引导学生根据“左右两边是不是相等”进行检验;三是在回顾反思求x值的过程基础上,讲了什么是“解方程”。这些都是以后解方程时反复使用的知识。
帮助学生逐渐掌握解方程的方法并形成相应的技能,是教材编写时认真思考的问题。用好教材设计的两道题,能培养学生这方面的能力。一处是第4页“练一练”第1题,为了使方程的左边只剩下x,方程的左边已经加上25(或减去18),右边应该怎样?这是刚开始教学解方程时的设计。通过在方框里填数,在圆圈里填运算符号, 引导学生正确应用等式的性质,体会解方程的策略和思路,理出解方程的关键步骤。学生在方框里填数一般不会有问题,在圆圈里填运算符号可能会出现错误。要通过交流和评价,帮助他们正确掌握方程的两边同时加上或同时减去相同的数。另一处是第6页第7题,简化解方程过程的书写,浓缩思路,是在基本掌握解方程的方法以后安排的。如解方程x-20=30,在方程的两边都加20这一步,省写了虚线框里的内容: x-20+20=30+20,直接写出x=30+20。这样做能使解方程的思考流畅、书写简便,从而提升解方程的能力。教学时要让学生体会简化的过程,重点讨论圆圈里填什么符号、方框里填什么数以及为什么。第8页“练一练”第1题、第10页第2题的编排意图与上面相同。
3列方程解决实际问题。
本单元解决的都是一步计算的实际问题,其中大多数都是第一学段里没有出现的。这些实际问题如果列算式解答,学生体会其中的数量关系有一定难度;如果用方程的知识解答,利用的是问题中最本质的数量关系,思路就顺畅得多。
列方程解决实际问题的关键是找到问题里的等量关系。列方程时的数量关系与列算式时明显不同。列算式时的数量关系把已知和未知隔裂,已知条件作为一方,要求的问题为另一方,通过已知数量的运算得到未知数量。而列方程的数量关系,把已知和未知融合起来,共同参与运算。寻找等量关系是列方程解决实际问题的教学重点,也是教学的难点。为此,教材作了三步安排。
(1) 教学方程意义的时候,列方程表示简单现象里的等量关系,有第2页“试一试”,“练一练”第3题,练习一第1~3题等。这些简单现象都是学生能够接受的,并以他们熟悉的方式呈现,如天平图、带括线的图画、线段图、图文结合的叙述等。让学生对什么是列方程、怎样列方程,尤其是依据什么列方程、列出的方程表示什么意思有所体会。在寻找等量关系和列方程的时候要注意两点: 一是联系生活经验,按照事情的发生与发展线索,理顺数量关系。如买1件上衣和1条裤子一共用去86元,原有的图书借出56本还剩60本,付出的钱数减电话机的价钱得找回的钱数,妈妈的岁数减小红的岁数得妈妈比小红大的岁数。有了这些等量关系,列方程就方便了。二是暂时不要鼓励对数量关系的发散性思考,也不要提倡列出的方程多样,确保把握和应用事件里的最基本的等量关系。这对以后的教学十分重要。
(2) 教学解方程的时候,渗透列方程解决实际问题的思想。例4求天平左边正方体的质量,例6求长方形试验田的宽,都是先列出方程再求解。这两道例题的教学重点是应用等式性质解方程,以实际问题为载体有两点好处: 一是初步体会列方程是解决实际问题的一种方法,从而发展解决问题的策略;二是继续体会列方程的依据是实际问题里的等量关系。例4的相等关系是天平两边物体的质量相等,学生已经比较熟悉。例6依据长方形面积公式列方程,是对等量关系的一次引导。教学的时候,既不要冲淡例题的教学重点,又要让学生获得这两点体会。
(3) 例7和相配合的“试一试”“练一练”教学列方程解决实际问题,主要解决相差关系和倍数关系的问题。这些实际问题里都有一个关于“相差多少”或“几倍”的已知条件,只要抓住这个条件分析相差数或倍数的具体含义,就能找到实际问题里的等量关系。
首次教学列方程解决实际问题,例7有三个内容: 一是怎样寻找数量间的相等关系,二是这个问题为什么列方程解答,三是列方程解决实际问题的步骤与格式。这三个内容中,第一个最重要,另两个内容都能在第一个内容中得到启示。
这道例题的相等关系“小军的成绩-小刚的成绩=0.06米”,是从“小刚比小军少跳0.06米”得出的。分析这个已知条件,首先想到小刚跳的米数、小军跳的米数与0.06米是三个有关系的数量;接着想到小军跳的米数多,小刚跳的米数少,0.06米是他们跳的米数的差,等量关系就出来了。把文字叙述的相差关系改变成数学式子表示的相等关系,就列出了方程。





