小学五年级数学 下册1-5单元教材分析
练习八配合分数与除法关系的教学而安排,除了分数与除法相互改写的练习外,还结合分数的意义应用分数与除法的关系。第3题从1米平均分成3份到2米平均分成3份,结合图示用填空的形式引导学生理解2米平均分成3份,每份有2个13米,是23米。这样的思路,经常用来解决实际问题。第4题里的两个问题既不相同,又有联系。求每人分得这袋糖的几分之几,要把这袋糖看成单位“1”,平均分成5份,如果写成算式是1÷5=15。求每人分得几分之几千克,可以通过2÷5=25(千克)计算,也可以通过每人分得2个15千克,是25千克的推理得到答案。在分别解答两个问题后,要进行比较,看到它们都是平均分的问题,都用除法计算;由于问题不同,两个除法算式的被除数不同。在解答第5题时,联系已有的经验学生能直接写出得数。题目要求先填出得数,再根据分数与除法的关系列出算式,是让学生体会求一个数是另一个数的几分之几的问题都能用除法计算。在此基础上,第53页第10题就提出了列式求出答案的要求。
5 先特殊后一般,通过改写假分数,教学带分数。
例7和例8主要教学带分数的知识,包括带分数的概念以及假分数化成带分数的方法。假分数等于1或者大于1,分子是分母倍数的假分数都能化成整数,分子不是分母倍数的假分数能写成带分数。例7和例8按这样的思路编排。
例7把44、105和287化成整数,其中的44和105分别在第38页例2和例3认识假分数时出现过。在教学分数与除法的关系后,又可以通过除法4÷4=1和10÷5=2算得它们分别等于1和2。因此,把44和105化成整数学生能够独立进行,而且思路与方法应该是多样的。交流的时候,把貌似不同的方法在本质上沟通起来,如画图形表示105,在里能够看到,5个15是1,10个15是2,从而体会分子除以分母是比较简便的方法。287在教材里首次出现,把它化成整数是在44和105化成整数的基础上进行的,分子除以分母很容易得出等于4。通过三个假分数化成整数的实例,教材引导学生研究这些分数的分子与分母的关系,理解能化成整数的假分数都是特殊的假分数,它们的分子都是分母的倍数。
特殊的假分数都能化成整数,其他假分数呢?这是许多学生的质疑,教材适时教学带分数的知识。先告诉学生,分子不是分母倍数的假分数虽然不能写成整数,但可以写成整数和真分数合成的形式,即写成带分数。然后以43为例,讲了把它写成带分数的思路以及带分数的写法和读法。43写成带分数的思路是把它分成33和13两部分,33是1,1和13合成的数是113。结合数轴有利于学生理解改写的思路,体会43写成113是合理的,它们可以用数轴上同一个点表示。还为例8的教学作了铺垫。
例8教学假分数化成带分数的方法。教学过程分两步进行: 第一步让学生联系带分数的含义,借鉴43化成113的经验进行改写。无论是画图的方法还是推理的方法,都是把114分成84和34两部分,再把2和34合起来写成234。画图的方法比较形象,推理比较抽象,两种方法相结合最适宜多数学生,这一点可以在交流时实现。第二步通过除法计算改写,要在理解的基础上应用这种方法。联系第一步的推算经验,能帮助学生理解算理,11÷4商2表示从11个14里分出2个44(即84),并把它看成整数2;余数3表示还剩3个14。所以114是2和34合成的数,可以写作234。教材里没有讲带分数的整数部分和分数部分,假分数化成带分数的方法只在实例中体会和应用,不需要形成严密的文字形式的法则。
两道例题分别教学假分数化成整数和化成带分数,第47页“怎样把假分数化成整数或带分数”引导学生整理新的认知结构。再通过“练一练”,把123、85等四个假分数分别化成整数或带分数,体会两种情况都要用分子除以分母的计算,最终化成不同形式的数是假分数的分子与分母之间是否存在倍数关系而决定的。
练习九第1~6题配合例7和例8的教学,其中第2题写出假分数和改写成带分数都要根据图意,一方面体会假分数可以写成整数和真分数合起来的形式,有利于理解带分数的含义。另一方面体会分子除以分母是假分数改写成带分数的方法,从而巩固例8教学的知识。第4题直线上面方框里的假分数,要根据分数单位以及几个13是三分之几的思路填写;直线下面方框里的带分数要根据带分数的概念填写,如1和23合成123、2和13合成213。如果再把各个假分数的分子除以分母,就能使假分数化成相应的带分数或整数。编排这道题是让学生更好地体会假分数和带分数的意义以及相互联系。另外,直线上下的33和1、63和2、93和3、123和4这四组数,要从每组的两个数都用直线上同一个点表示,每组的两个数可以互相改写等方面理解同组的数大小相等。尤其要思考1、2、3、4分别化成()3的方法,为独立解答第5题作准备。第6题在比较数的大小时,学生可以联系多种分数知识进行思考。要鼓励策略多样,如56和76可以想分母相同,分子小的分数小;可以想5个16比7个16少;可以想56小于1,76大于1……交流各种思路和方法,有利于知识的融会贯通,发展思维的灵活性。
还有一点需要指出,本单元只教学假分数化成带分数,不教学带分数化成假分数。因为小学教学里不进行带分数的四则计算,不需要带分数化成假分数。更主要的原因是,教学带分数是为了更好地理解假分数,因为假分数化成整数或带分数,容易感受假分数的分数值。体会数值的大小,是建立数概念不可缺少的。
6 优化小数与分数相互改写的教学。
例9教学把分数化成小数,从两个女孩比谁的彩带长的实际问题里提出比较05和34的大小的数学问题。相比较的两个数,一个是小数、一个是分数,联系已有的小数米相比,间接得到05和34的大小关系。这种比较策略在以前是少见的,现在特地选编在例题里。另一种是把34化成小数,先比较两个小数的大小,再得出34与05谁大、谁小。把不同形式的数变成相同形式,也是一种策略。分数化小数的方法是例9教学的数学知识,只要应用分数与除法的关系,把分子除以分母,商写成小数就可以了。这些对学生来说是不困难的。有些分数的分子除以分母的商是循环小数,如“试一试”里的56,教材中有“除不尽的保留三位小数”的指示。“试一试”选择925和56两个分数化成小数,让学生清楚地知道,有些分数能化成有限小数,有些分数只能化成无限小数。至于什么样的分数能化成有限小数,什么样的分数不能,暂时不要深入研究。
例10教学小数化成分数,要应用小数的意义。只要回忆起一位小数表示十分之几、两位小数表示百分之几、三位小数表示千分之几等知识,把小数写成分数是很容易的。教材考虑到小数意义是以前的教材里教学的,靠例10的问题情境激活旧知识有困难。所以,安排了“象”帮助学生回忆。先对学生说“一位小数表示十分之几”,并把相应的0.3改写成310。然后让学生继续想两位小数、三位各表示几分之几,把0.13和0.213也改写成分数。





