芒德勃罗:沿着博物学传统走来
由于不喜欢布尔巴基学派(解释见后文)的数学,芒德勃罗在高等师范学校念了没 几天,就转 到了综合工科学校。1947年芒德勃罗从法国综合工科学校毕业。1948年获美国加州理工大学硕士学位;1952年获巴黎大学博士学位。随后几年他不断在几个学科中游荡,先后“闯入” 过物理学、 经济学、生理学、语言学和其他一些似乎毫不相关的学科。他喜欢用“intellec tual wanderer”(有知识的流浪汉)、“wandering around”(游荡)等字眼描写自己的学术 生涯和人生经 历。
芒德勃罗的博士学位论文显示了其从事交叉学科研究的才能。论文分两部分,第 一部分采用 数学理论研究词汇中字母的分布规律;第二部分研究热力学。将不同学科中的理论有机地组织一起,用于研究某一个特定问题,这代表着芒德勃罗科学研究工作的特色。
到美国后,他最先是作为麻省理工学院的一名研究助理(research associate),1958成为约 克郡高地沃森研究中心(T.J.Waston Research Center,IBM的一个研 究基地)物理部研究人员(staff member)。
芒德勃罗曾在日内瓦大学(1955-1957),法国里尔(Lille)大学及综合工科学校 (1957-1958) 任数学讲师。曾任耶鲁大学罗宾逊(Abraham Robinson)数学科学副教授,麻省理工学院经济 学讲师和访 问教授及应用数学访问教授,哈佛大学经济学、应用数学与数学访问教授,耶鲁大学工学访问教授,爱因斯坦医学院生理学访问教授,巴黎沙特(Paris-Sud)大学数学访问 教授。1987年 成为耶鲁大学数学教授。
芒德勃罗因创造了原来根本不存在的分形学科而一举成名。1975年以法文出版《 分形对象: 形、机遇与维数》(Les Objets Fractals:Forme,Hasard et Dimension),1977年以英文出版《分形:形、机遇与维数》 (Fractals:Form,Chance and Dimension),1982年出 版《大自然的分形几何学》。最后一部影响最大,它是分形学科的宣言书, 包罗万象,显示 了将分形用于自然现象描述的重要性。到目前为止他一共写过这三部书,后面每一部都 是对前一部的修订和增补,其中相当部分是重写的。他对自己的专著的描述用词是:“普及性的 ”、“随笔 ”(Essay)、“宣言书”、“从头到尾都是序言”。最后一句是仿达西。汤普森 (D‘Arcy Thompson,1860-1948),汤普森曾写过一部巨著《论生长与形式》,但汤氏称该书 从头到尾都是 序言。
据初步统计,到1989年底他已经发表了123篇论文,内容极其庞杂,涉及语言学 、概率论、 通讯工程、水利学、经济理论、金融分析、布朗运动、湍流、复迭代、宇宙学、临界现象与相变等等。
芒德勃罗不是传统意义上的数学家、科学家,他的经历和学术生涯史无前例。 1973年以前, 他一直不被各领域的科学家所认同,“分形理论”诞生后他的“政治”地位(他自己愿意用这样的词汇)剧变,成为世界上最有名气的科学家之一。通过因特网(Internet),可以很好 地检验一个人 的知名度:用万维网(WWW)浏览器打开Yahoo!检索引擎,输入“Mandelbrot” 或者“fractal”,几秒种内便可查到上万条信息。仅从这一点来看,当今世界还没有哪位 科学家如此赫 赫有名,即使将他与影视名星放在一起,其知名度也不逊色。
科学界曾两次为他举行国际范围的祝寿活动,并相应出版了祝寿科学论文集。一 次是1989年 在其65岁生日时,纪念文集以《物理学D》(Physica D,专门刊登非线性科学方面的论 文)杂志专号出版(1989年第38卷),刊登了他的大幅照片及详细学术经 历。另一次是1994年 他70大寿(会议拖到1995年举行),纪念文集由新加坡的《分形》(Fractals,1991年 创办的一份关于“大自然复杂几何的跨学科”学术杂志)杂志专号出版(1995年第3卷第3期)。 对一位科学工 作者而言,这是很不容易享受到的荣誉。
芒德勃罗现为美国艺术与科学院院士,美国国家科学院外籍院士,欧洲艺术、科 学与人文学 院院士。他曾荣获巴纳奖章(F.Barnard Medal,1985)、富兰克林奖章(Franklin Medal,1986 )和物理学沃尔夫奖(Wolf Prize,1991),还有其他若 干奖励。
芒德勃罗开创的分形理论近年来十分红火,据阿哈罗尼(Amnon Aharony)和费德 (Jens Feder)1989年对INSPEC数据库统计,公开发表的分形论文累计数量符合指数规律exp{(t-1974)/1.74}, 其中t代表年份,这表明每年论文数量以1.8的因子增加。
博学成就了事业
进入20世纪,各门科学早已扬弃了博物学的传统,林耐(Carl von Linne,1707-1778) 、莱伊尔(Charles Lyell,1797-1875)和达尔文(Charles Robert Darwin,1809-1882)的时代 一去不复返 了,现在很难找到某人因采用博物学方法而取得重大成功,但芒德勃罗是个极大的例外,他是现代科学界最大的博物学家(naturalist)。他十分推崇《论生长与形式》( On Growth and Form)的作者达西。汤普森,这也间接表明他的博物学倾向。
他的思维方式很特别,喜欢几何是一个特征,此外他更关心数学史和物理学史( 杨振宁、李 政道等大科学家也都十分重视科学史)。多数研究人员总是找最新的学术期刊来阅读,以便能跟上科学技术日新月异的形势。而他专门找一些破旧的、没人翻看的期刊,并且时常注意 一些不起眼 的非核心刊物。这是一个成才策略问题。
芒氏特别重视那些当时非主流的思想,尤其是那些被称作“病态的”、“反直觉 的”的东西 .“医生和律师用各种‘病例集’和‘案例集’来称呼有一个共同题目的实际病例和案例的汇编。而科学上尚无相应的专门名词,因此我建议也应用‘范例集’这个名词。重要的范例 需倍加注意 ,而稍次的也应给予评述:通常可利用先例而缩短讨论。”[2]因此诸 如现在人们熟悉的康托尔 (Georg Ferdinand Philip Cantor,1845-1918)三分集、外尔斯特 拉斯(Karl Theodor Wilhelm Weierstrass,1815-1897)不可微曲线、可充满正方形区域的皮 亚诺(Giuseppe Peano,1859-1932)曲线、 谢尔宾斯基(Waclaw Sierpinski,1882-1969)地毯 与海绵、柯赫(H.von Koch,1870-1924)雪花曲线等等,都被他视为珍宝。而 这些一直被正统 科学视为少数的反例,只是在教学过程中作为一种逻辑可能性偶而提到。在分形如此流 行的今天,本文没有必要一个一个地仔细讲述这些“怪物”(芒氏视其为“宝贝”)的具体性质, 从任何一本 关于分形的书中都可以容易找到一些例子。





