芒德勃罗:沿着博物学传统走来

减小字体 增大字体 作者:本站收集整理  来源:本站收集整理  发布时间:2009-10-11 08:12:56

  自相似性≡尺度变换下的一种对称性→双曲分布→非高斯稳定分布→巧妙利用了 方差为无穷的“病态”性质→莱维飞行→各种应用(海岸线、皮亚诺曲线、门格尔/谢尔宾斯基海绵等) →分维测度→ 分形几何→自相似性→……

  芒德勃罗曾说:“与分形关系最紧密的是双曲概率分布”(见《大自然的分形几 何学》第38 章)。他最早接触的词频分布与收入分布研究,都涉及这一主题。在我们分析的上述方案中,特别突出了目前一般分形著作不太重视的“非高斯稳定随机过程”。

  芒德勃罗从事的第一个科研实践(实际上仍然理论气十足)是研究通讯中的噪声和 词频的分布 ,后来是河水的涨落以及经济学中的收入分布规律。这几项似乎一点不搭边,但它们都指向一个不变的东西,这个线索如此重要,以至不理解它就无法理解芒德勃罗一生工作的统一性 .这个线索 沟通了自然科学中长期存在的确定论描述体系与随机论描述体系,这个线索帮助人们理解宣言书《大自然的分形几何学》中各个部分之间的内在联系。这个线索的潜在价值 远未开发完 毕,它正在成为众多新学科的生长点:如最近对分数布朗运动(FBM)的兴趣,对莱维飞行(Levy flights)的重新关注,对非高斯稳定随机过程的新认识等等。

  那么这个线索是什么呢?就是从他的老师莱维那里学来的“莱维稳定分布” (Levy‘s stable distributions)。莱维是概率论少有的几位著名的奠基人之一,虽然现在的学生几 乎不知道这个 伟大人物了。当年在法国综合工科学校,莱维教过芒德勃罗,芒氏师从莱维学习基本的数学分析。后来有人问芒氏是否是莱维的学生。芒氏的回答很有趣:“不,许多人 后来都声称 是莱维的学生,但莱维特别否认他有什么学生”。芒氏讲的“学生”(student) 换成“弟子”(disciple)大概更恰当些。

  芒德勃罗大约在1960年左右真正意识到非高斯型稳定分布的意义,从此他坚定信 念,不为外 界各种反对、批评所动,连续将这种思想应用于经济学、流体力学以及天文学。

  在概率论基础奠定之前,钟型误差分布定律就已广为人知,这种分布具有各种想 象得出的好 性质,所以被冠以“正态分布”,也称高斯正态分布。言外之意,不满足这些性质的分布都不是标准的——也许多少有些“变态”。特别是本世纪初对布朗运动的大量研究,更加深了 人们对这种 完美分布的向往。维纳(Norbert Wiener,1894-1964)成功地发展了一套关于布朗 运动的漂亮数学理论。如今人们称布朗运动往往有两种含 义,一种指物理上实在的微粒运动 导致的宏观过程,另一种则指维纳的那些纯粹数学。实际上维纳在研 究布朗运动随机过程时所用到的分布只是高斯正态分布。

  数理科学中个别案例使用正态分布导致了空前成功,直接诱导人们将它推广到一 切物理现象 ,最终必然影响到社会科学界。在相当长时间里(甚至到现在仍然如此),数理统计工作者言必称正态分布,在相当程度上正态分布是唯一有用、方便的工具。然而芒德勃罗发现这种流 行观念是错 误的。

  经济学中的“稳定分布”

  现在查到芒德勃罗一共发表18篇经济学论文(也许会有几篇的出入),主要涉及《 经济学季刊 》、《政治经济学杂志》、《计量经济学》、《商业杂志》、《国际经济评论》、《交叉科 学评论》、《运筹学研究》、《经济学与统计学评论》、《经济与社会测度年刊》、《应用经济学》等,发表时间集中在1959年至1973年。综观芒氏的论文和专著,他只关心一个核心 的经济问题 ——收入分布以及与之有关的价格问题。据他人本讲,他对经济学中的帕累托(Vilfredo Pareto,1848-1923)分布的研究从1957年在哥伦比亚大学和康奈尔大学的时期就开 始了,然后在法国里尔 大学和综合工科学校继续了这项工作。1973年以后他义无返顾地离开了经济学,专心发展“分形几何学”。与在其他学科一样,经济学界并没有轻易接受他的非 正统观点, 但芒德勃罗已经得到自己想得到的东西,他并不在乎经济学界当时能否承认他。

  米罗夫基(Philip Mirowski)1995年评论说,芒德勃罗的经济学研究在经济学团 体内引起过两次巨大风波,一次是在60年代末,一次是在80年代末。第一次是因为芒氏的观点攻击了当时占支配地位的计量经济学和资产定价理论,第二次是因为芒氏在非线性动力学运动中出尽 风头,经济 学家受“浑沌”(chaos)的影响,间接评论了芒氏的早期研究工作。两次反响的主流都是怀疑芒氏的理论和方法,既使有一些人受芒氏论文的激励,转而注意自己未曾考虑的 方面,也不 相信芒氏的理论。

  芒德勃罗最早关注经济学问题是从关于收入分配的帕累托定律(Paretos law) 开始的,这个定律的形式颇像他在语言学词频分布中注意到的齐普夫定律( George Kingsley Zipf‘s law)。意大利经济学家帕累托曾专门分析过收入分布数据,他发现收入分布具 有如下特点:

  N=N_0x-b,

  其中N_0是总人口数,x是收呻水平,N是收入不低于x的人口数,b为参数。芒德勃罗后 来将指数b解释 为分维数D.这个公式的含义是,收入水平越高,则收入高于这一水平的人口越少。现在甚至不清楚帕累托是否用最小二乘法或者别的统计程序实际导出过这个公式, 他当时认定 收入分布对于人为干预是不变的。用概率的观点表示,此定律的形式为:

  1-F(u)=Pr(U(t)>u)~(u/u*)-α~Cu-α,

  其中α称帕累托指数,一般介于(1,2)之间,有时也可以达到(4,5)之间。此式与上面 的公式是等价 的。芒德勃罗也称P(u)=Pr(U>u)=Fu-D类型的分布为双曲分布 (hyperbolic distributions)。

  直到芒德勃罗1960年左右开始将帕累托分布重新用于经济学,此分布在经济学界 几乎没什么 影响。他的论文《帕累托-莱维定律与收入分布》、《稳定帕累托随机函数与收入的乘差分》、《某些推断价格的差分》、《帕累托分布与收入最大化》、《统计经济学的新方法》等 发表后,经 济学界不以为然。正统经济学家认为数据拟合得并不佳,并且认为芒氏的理论需要微观证据。

  芒德勃罗看重的不是数据拟合到何种程度,而是收入分布的长时尾(fat tails) 现象在尺度变换下具有不变性,即个人收入分布、厂商尺度的收入分布和城市尺度的收入分布都具有这 样的“尾巴 ”。“长时尾”现象暗示存在一种非高斯意义上的稳定分布。芒德勃罗熟悉他老师莱维的工作,立即将它与莱维的“稳定分布”联系起来。

上一页  [1] [2] [3] [4] [5] [6] [7] [8] [9]  下一页

Tags:

作者:本站收集整理
  • 好的评价 如果您觉得此文章好,就请您
      0%(0)
  • 差的评价 如果您觉得此文章差,就请您
      0%(0)

文章评论评论内容只代表网友观点,与本站立场无关!

   评论摘要(共 0 条,得分 0 分,平均 0 分) 查看完整评论