芒德勃罗:沿着博物学传统走来
从1977年的《分形》一书可以看出,芒德勃罗已经自如地将“莱维飞行”运用于 各种场合, 包括布朗运动、分形集团和星际物质分布,并且给出占7页篇幅的图形说明。遗憾的是,科学 界直到90年代才认识到这部分工作的重要性。
阵发湍流
芒德勃罗关于流体湍流问题的研究始于对经济学的研究之后,1963年秋季他在哈 佛大学听了斯图尔特(Robert Stewart)的一次讲座,了解到流体力学研究中讨论阵发(间歇)(intermitt ency)现象,同时知道了苏联学 派关于湍流研究的一些最新结果,如柯尔莫哥洛夫1941年与19 61-1962年两个阶段的创造性工作。芒德勃罗立即有一种冲动:试图转向湍流研究。他觉得 这些观念对于 自己并不算新鲜事,大约10年前自己在研究通讯噪声时,就碰到过类似的现象。他认为湍流中的许多问题与分形有关(当时还没有“分形”这个概念)。他迫不急待地想把 自己在其他 领域做的工作“翻译”成流体力学的语言。
众所周知,湍流是困扰科学家百年之久的老大难问题。流体运动显然满足纳维叶 -斯托克斯 (Navier-Stokes)方程,但这无济于事,这个方程根本无法求解。多少年来人们从解析的角 度做了各种努 力,均未获重大进展。芒德勃罗则是从几何形状入手的,他声称自己不断观察关于湍流的绘画、照片,考察湍流的速度记录,甚至倾听湍流(将数据转化成音频信号),还 用功率谱等 手段测量湍流,以获得基本的几何直觉。利用自己对其他奇异性问题研究的经验,他形成了一些猜想,但并不能证明它们。直到1967年他才发表关于湍流的文章《偶发湍流 》(Sporadic turbulence),1968年发表《论阵发自由湍流》(On intermittent free turbu lence),1972年发表《有关阵发湍流能量耗散的对数正则假设的可能细化》 ,1974年发表《 自相似级联阵发湍流、高阶矩的发散性与载体的维数》,1975年发表《论各向同性湍流》 , 1976年发表《阵发湍流与分维》,1977年发表《分形与湍流:吸引子与弥散》等。
芒德勃罗对湍流的研究不是从基本方程入手进行严格数学分析,而是从宏观上、 从几何角度观察,先获得几何直觉,构造核心概念,再一层一层作定性分析。这一思路是“将自相似技术应用于湍流的几何学”。芒氏明显地受柯尔莫哥洛夫1941年文章风格的影响,他说:“方 程(指欧拉方 程和纳维叶-斯托克斯方程)并没有帮助我们理解柯尔莫哥洛夫,同时柯尔莫哥洛夫也没有帮助我们解方程。”
芒氏首先从湍流级联(cascade,也译级串)中的自相似出发,在这方面著名气象学 家里查逊仍然走在前面。1926年里查逊就引入了与级联有关的旋涡等级层次(hierarchy of eddies) 的概念。1941年哥尔莫哥洛夫、奥布科夫(A.M.Obukhov)、翁萨格(Onsager)和魏扎克(von Weiza……cker)沿此路线作出重大贡献,不过一般情况下这一组研究只冠以柯尔莫哥洛夫的名字。
芒氏作出“湍流运动的奇异性本质上是分形”的重要猜想。从其它方程导出的已 知的奇异性 不足够以解释直观上我们看到的湍流的特征,于是他猜测:基本方程的湍流解,一定牵涉到新的类型的奇异性,并且可能就是分形。特别地,他说:“纳维叶-斯托克斯方程的解如果 存在,就是事 实上的极限分形。”他进而猜想,欧拉方程解的奇异性,也是实际上的分形。这样一来他发展的分维概念就有了用武之地。直观上看,纳维-斯托克斯方程的解要比欧拉 方程的解光滑 些、少些奇异性,于是可以猜测欧拉方程的解的维数比较大一些。芒氏承认,证明这些猜想,都远远超出了他的解析能力。实际上对于微分方程也是如此,以前人们只知 道不动点、 极限环和极限环面(torus),经过浑沌的洗礼,才知道还有另一种非周期定态运动。当时芒德勃罗直觉上猜测流体方程应当具有新的奇异性,的确是一个创见。
在研究湍流阵发现象时,他贯彻了“自相似教义”,提出了一个有趣的新概念“ 乳凝”(curdling),与它对应的一个词是“乳清”(whey)。“乳凝”和“乳清”随机地混合在一起,构成复杂的结构,类似于康托尔集合、谢尔宾斯基海绵。芒氏特别强调,对“乳凝”这个词不 要作字面上 的理解,但是考虑到“乳凝”外面的空间包围着“乳清”,倒是有助于理解问题。芒氏形成这样的概念,大概受到诺维克夫(E.A.Novikov)和斯图尔特(R.W.Stewart)1964年论文《湍流的 阵发性与能量耗散涨落的谱》(原文为俄文)的影响,也受到霍伊耳(F.Hoyle)1953年和1975年关于星系团 等级层次模型的影响。
芒氏解释说,诺维克夫与斯图尔特合写的文章的核心假设是,阵发性是由级联导 致的,在每 一阶段能量都从一个旋涡(eddy)“集中”或者“乳凝”(作动词用)到N个次级子旋涡(su beddies),旋涡的比例为r,于是有如下分维公式D=logN/log(1/r)。对于宇宙 学D一般小于2,但对于流 体湍流D大于2.在1977年的专著《分形》中,芒氏用四页插图表现 “随机乳凝”(random curdling)结构,用以形象地说明流体湍流耗散的一般过程。
经过m次级联耗散后,能量均匀分布在第m层次的γmD个子涡旋上。在三维空间上 一共有γ3m个子涡旋。当级联无限进行下去时,耗散的极限分布均匀地散布在一个维数小于3的分形“乳凝”(作名词用)上。芒德勃罗将这种湍流称为“分形各向同性湍流”(fractally homogeneous turbulence)。
利用这种思想芒氏于1976年将柯尔莫哥洛夫的5/3指数改写为5/3+B,其中 B=(3-D)/3.
芒氏特别研究了乳凝与乳清的结构关系,这时他用到了物理学中非常重要的概念 ——逾渗和 逾渗壶(percolator)。逾渗壶就是一组自相似的集团(cluster),而集团是由联通的乳凝组成 的。芒氏1974年将简单的乳凝(1/r和N都取整数的情况)分解过程称为正则乳凝(canon ical curdling),后来又考虑令N可以随机变化,对应于每一层次有一个随机数U,再规定 一个概率阈值p ,当U大于p时子旋涡湮灭成为乳清,当U小于p时子旋涡存活为乳凝。当p小于 1/r3时,所有过程都死掉,于是D为0,对于其他情况有非零概率,过程收敛到一个维数为 D=3-logp/logr 的分形上。此模型的好处在于D可以在0和3之间变化。
法国尼斯天文台的弗里茨(Uriel Frisch)教授1995年在专著《湍流:柯尔莫哥洛 夫的遗产》中高度评价了芒德勃罗关于阵发湍流的思想,实际上弗氏是较早就认识到芒氏思想重要性的 少数人之一 .1974年克莱茨南(R.H.Kraichnan)纠正了随机级联模型的一个概念错误,用速度增量和能量流这些惯性物理量代替了耗散量,使得诺维克夫-斯图尔特模型发展为β 模型。弗里茨在β 模型中讲述了芒氏的自相似级联思想。结合柯尔莫哥洛夫1941年的论文





