五年级数学 上册教材分析2

减小字体 增大字体 作者:本站收集整理  来源:本站收集整理  发布时间:2010-05-27 12:00:10
2. 解决应用法则时的难点,提高计算的正确率。
计算小数乘法,在积里点小数点时,如果位数不够怎么办?把除数是小数的除法转化成除数是整数的乘法,如果被除数的小数位数比除数少怎么办?这些都是应用计算法则的难点问题,也是计算容易发生错误的地方。为此,教材安排例2和例6解决这些问题。
第七单元移动小数点的位置,学生已经知道: 如果位数不够,可以用“0”补足。只要把这些方法应用到例2和例6的情况中去,问题就解决了。
例2的教学线索是凸现矛盾、激活旧知,专项练习、新旧沟通。首先通过问题“要从积的右边起数出几位点上小数点”让学生发现784的位数不够,利用矛盾激活已有的经验。接着让学生完成竖式计算,在点小数点时体会“位数不够,要在前面用‘0’补足”。然后是“练一练”安排在积里点小数点的专项练习,掌握补“0”的要领。最后是第89页第4题,在积里点小数点,有时位数够,有时位数不够;有些只添整数部分的“0”,有些小数部分也添“0”。出现各种情况,使新旧知识融会贯通。
例6的教学线索是演绎法则、示范方法,变式扩展、专项练习。先指向算式1.1÷0.55提出问题:“除数要乘几?被除数呢?”使学生发现被除数是一位小数,比除数的小数位数少。然后示范了在被除数末尾先补“0”再移动小数点的方法,要求学生思考被除数末尾为什么可以补“0”,以及转化后小数点的位置,并把除法算完。“试一试”整数除以小数,是例题的变式。表面上似乎有点特殊,其实转化并不难。在去掉除数的小数点的同时,被除数3乘10是30。如果让学生说说例题和“试一试”中转化的体会,他们对一个数除以小数应该怎样计算就清楚了。练习十八第1题是转化的专项练习,包含了可能出现的各种情况,能帮助学生更好地掌握除数是小数的除法。
3. 选用不同的方法教学求积和商的近似值。
求积的近似数,一般先算出积,再根据精确度的要求用“四舍五入法”取近似数。在这些数学活动中,计算小数乘法以及用“四舍五入法”求近似数,都是学生已经掌握的知识。因此,求积的近似数不要教学新的数学内容。基于这些思考,例3在编写上有两个特点:一是3.18×1.6的笔算已经完成,只要把积保留两位小数,避免教学精力过多用于笔算乘法,淡化求积的近似数这个主题;二是让学生在横式上填写结果,把求近似数留给学生进行。根据例题的编写特点,教学时要充分利用教材,应先让学生独立学习,再组织交流。交流的内容是求近似数时的思考,使学生正确应用“四舍五入法”。
练习十六第4题先估计平行四边形的面积,再计算并把得数保留一位小数。要让学生明白估计和求近似数不是一回事。估计的时候把底和高分别看成比较接近的整数,通过口算整数乘法进行的。求近似数一般先算出精确的积,再“四舍五入”。
求商的近似数,不要把除法算完,只要除到适当的时候就可以求近似数。况且许多除法的商是循环小数,不可能最终除尽。因此,教学求商的近似数有两个新内容:一是循环小数的知识,二是求商的近似数只要除到什么时候就可以“四舍五入”。这两个内容,前一个安排例题教学,后一个让学生在求商的近似数时体会。
教材中关于循环小数的知识,只是让学生联系除法计算,体会如果继续除下去,永远不会结束。原因是除的过程中“余数重复出现”,“商也重复出现”。告诉学生这样的商是循环小数,可以用“四舍五入法”取循环小数的近似数。上面这些内容都在例7里教学。至于循环小数的定义,安排在教材的底注里。循环小数的其他知识,编写在“你知道吗”里让学生阅读,不列入基本的教学要求。
“试一试”用计算器计算两道除法,把得数保留三位小数。这里用计算器算有两个原因:  一是节省计算时间,不把精力耗费在笔算上,而是用于求商的近似数;二是计算器一般能显示10位数字,在计算器上可以看到50÷60的商是0.8333……64÷60的商是1.066……它们都有重复出现的数字,都是循环小数。教学“试一试”还要注意一点,让学生说说怎样把得数保留三位小数,体会只要看小数部分第四位上的数,就能决定“四舍”还是“五入”。小数部分第五位以及后面各位上的数与求近似数无关。这些体会用于练习十九第2题,学生就知道只要除到商里有四位小数,就能保留三位小数,不必再除下去了。
有些实际问题如果用“四舍五入法”求近似值,答案会不合理。如例8中300元钱买单价45元的足球,尽管300÷45的商接近7,最多只能买6个。又如“试一试”中126人乘船过河,每次限乘15人,虽然126÷15=8.4,但至少要9次才能全部过河。类似这些问题,在前面几册教材里陆续出现过一些,由于学生在那时年龄小,缺乏生活经验,因此只是初步接触,完全理解这些问题还有困难。本单元让学生再次学习这些问题,效果会好得多。这部分教材没有教“进一法”“去尾法”等新的求近似数的方法,也没有出现这些方法的名称。只是让学生联系现实的事情,凭生活经验和理解能力,找到比较恰当的答案。教学时一定要注意这一点,以免加重不必要的负担。
4. 让学生发现整数乘法的运算律对小数乘法同样适用。
学生已经知道整数加法的运算律对小数加法同样适用,整数乘法的运算律对小数乘法是否适用?还需要验证。例4里有三组算式,先经过计算知道同组的两个算式得数相同,它们可以用等号连接。再观察各个等式,分别得出小数乘法也有交换律、结合律和分配律。即整数乘法的运算律对小数乘法同样适用。教材安排的学习活动,不但是形成数学知识的过程,还能培养严谨的认知态度。教学例4要注意两点:一是圆圈里的等号必须在计算之后,根据左右两式的得数相同,才能填写。绝不能未经计算就写等号。如果不计算就写等号,例4的教学就不是发现运算律同样适用,变成应用运算律改写算式了,这是认知程序上的逻辑错误。二是要让学生指着三个等式逐一说说各表示什么运算律,使运算律的内涵更加清楚。“试一试”和“练一练”都是应用乘法运算律进行简便运算,因为学生已经有简便运算的经验,教材不再编排例题。
除了乘法运算律,还有两个整数的计算知识也要应用到小数计算中来。一个是除法的性质,安排在第97页第10题,通过两组算式的计算和比较,发现整数除法的性质在小数除法中也同样适用。另一个是四则混合运算顺序,安排在第97页第11题,直接应用于小数四则混合运算。

上一页  [2] [3] [4] [5] [6] [7] [8] [9]  下一页

Tags:

作者:本站收集整理
  • 好的评价 如果您觉得此文章好,就请您
      0%(0)
  • 差的评价 如果您觉得此文章差,就请您
      0%(0)

文章评论评论内容只代表网友观点,与本站立场无关!

   评论摘要(共 0 条,得分 0 分,平均 0 分) 查看完整评论