15.2乘法公式 教案设计
平方差公式
教学目标:经历探索平方差公式的过程;会推导平方差公式,并能运用公式进行简单的运算,培养学生观察、归纳、概括的能力.
教学重点与难点:平方差公式的推导和应用;理解平方差公式的结构特征,灵活应用平方差公式.
教学过程:
一、学生动手,得到公式
1.计算下列多项式的积:
①(x+1)(x−1);②(m+2)(m−2);③(2x+1)(2x−1)

①(x+1)(x−1) = x2−x+x−1 = x2−1
②(m+2)(m−2) = m2−
③(2x+1)(2x−1) = 4x2−2x+2x−1 = 4x2−1
2.提出问题:
观察上述算式,你发现什么规律?运算出结果后,你又发现什么规律?
3.特点:
等号的一边:两个数的和与差的积,等号的另一边:是这两个数的平方差
4.得到结论:(a+b)(a−b) = a2−ab+ab−b2 = a2−b2.
即(a+b)(a−b) = a2−b2,两个数的和与这两个数的差的积等于这两个数的平方差,这个公式叫做(乘法的)平方差公式.
二、熟悉公式
下列哪些多项式相乘可以用平方差公式?
①(
学生讨论并回答,教师总结,其中①④⑤⑥可以用平方差公式
认清公式:在等号左边的两个括号内分别没有符号变化的部分是a,变号的部分是b
三、公式的几何关系
思考:你能根据右图中的面积说明平方差公式吗?
学生讨论并回答,教师总结:
(a+b)(a−b)为长方形①与③的面积和
a2−b2则是长方形①与②的面积和
而长方形②与③的是形状大小完全一样的两个长方形,面积相等
所以(a+b)(a−b) = a2−b2
四、运用公式
直接运用
例:①(3x+2)(3x−2);②(b+
解答:①(3x+2)(3x−2) = 9x2−4
②(b+
③(−x+2y)(−x−2y) = (−x)2−(2y)2 = x2−4y2
简便计算
例:①102×98;②(2+1)(22+1)(24+1)(28+1)(216+1)+1
解答:①102×98 = (100+2)(100−2) = 10000−4 = 9996
②(2+1)(22+1)(24+1)(28+1)(216+1)+1
= (2−1)(2+1)(22+1)(24+1)(28+1)(216+1)+1
= (22−1)(22+1)(24+1)(28+1)(216+1)+1
= (24−1)(24+1)(28+1)(216+1)+1
= (28−1)(28+1)(216+1)+1
= (216−1)(216+1)+1
= 232−1+1 = 232.
五、小结:
平方差公式:两个数的和与这两个数的差的积等于这两个数的平方差,即(a+b)(a−b) = a2−b2.
完全平方公式
教学目标:完全平方公式的推导及其应用;完全平方公式的几何解释;视学生对算理的理解,有意识地培养学生的思维条理性和表达能力.
教学重点与难点:完全平方公式的推导过程、结构特点、几何解释,灵活应用.
教学过程:
一、提出问题,学生自学
问题:根据乘方的定义,我们知道:a2=a•a,那么(a+b)2 应该写成什么样的形式呢?(a+b)2的运算结果有什么规律?计算下列各式,你能发现什么规律?
(1)(p+1)2 = (p+1)(p+1) = _______; (m+2)2 = _______;
(2)(p−1)2 = (p−1)(p−1) = _______; (m−2)2 = _______;

学生讨论,教师归纳,得出结果:
(1) (p+1)2 = (p+1)(p+1) = p2+2p+1
(m+2)2 = (m+2)(m+2) = m2+
(2) (p−1)2 = (p−1)(p−1) = p2−2p+1
(m−2)2 = (m−2)(m−2) = m2−
分析推广:结果中有两个数的平方和,而2p=2•p•1,4m=2•m•2,恰好是两个数乘积的二倍(1)(2)之间只差一个符号.
推广:计算(a+b)2 = __________;(a−b)2 = __________.
得到公式,分析公式
结论: (a+b)2=a2+2ab+b2 (a−b)2=a2−2ab+b2
即:两数和(或差)的平方,等于它们的平方和,加(或减)它们的积的2倍.
二、几何分析:
你能根据图(1)和图(2)的面积说明完全平方公式吗?

图(1)大正方形的边长为(a+b),面积就是(a+b)2,同时,大正方形可以分成图中①②③④四个部分,它们分别的面积为a2、ab、ab、b2,因此,整个面积为a2+ab+ab+b2 = a2+2ab+b2,即说明(a+b)2 = a2+2ab+b2.
类似地可由图(2)说明(a−b)2 = a2−2ab+b2.
三、例题:
例1、应用完全平方公式计算:
(1)(
)2 (3)(−a−b)2 (4)(b−a)2
解答:(1)(
(2) (y−
)2 = y2−y+![]()
(3) (−a−b)2 = a2+2ab+b2
(4) (b−a)2 = b2−2ba+a2
例2、运用完全平方公式计算:
(1)1022 (2)992
解答:(1)1022 = (100+2)2 = 10000+400+4 = 10404
(2)992 = (100−1)2 = 10000−200+1 = 9801
四、添括号法则在公式里的运用
问题:在运用公式的时候,有些时候我们需要把一个多项式看作一个整体,把另外一个多项式看作另外一个整体,例如:(a+b+c)(a−b+c)和(a+b+c)2,这就需要在式子里添加括号;那么如何加括号呢?它有什么法则呢?它与去括号有何关系呢?
学生回顾去括号法则,在去括号时:a+(b+c) = a+b+c,a−(b+c) = a−b−c
反过来,就得到了添括号法则:a+b+c = a+(b+c),a−b−c = a−(b+c)
理解法则:如果括号前面是正号,括到括号里的各项都不变符号;如果括号前面是负号,括到括号里的各项都改变符号.也是:遇“加”不变,遇“减”都变.
总结:添括号法则是去括号法则反过来得到的,无论是添括号,还是去括号,运算前后代数式的值都保持不变,所以我们可以用去括号法则验证所添括号后的代数式是否正确.
五、小结:
1、完全平方公式的结构特征:公式的左边是一个二项式的完全平方;右边是三项,其中有两项是左边二项式中每一项的平方,而另一项是左边二项式中两项乘积的2倍.
2、添括号法则:如果括号前面是正号,括到括号里的各项都不变符号;如果括号前面是负号,括到括号里的各项都改变符号.利用添括号法则可以将整式变形,从而灵活利用乘法公式进行计算,灵活运用公式进行运算.





