高中高考数学易错易混易忘题分类汇总及解析(3).doc
【练30】已知函数
【易错点31】不等式的证明方法。学生不能据已知条件选择相应的证明方法,达不到对各种证明方法的灵活应用程度。
例31、已知a>0,b>0,且a+b=1.求证:(a+
【易错点分析】此题若直接应用重要不等式证明,显然a+
证法一:(分析综合法)欲证原式,即证4(ab)2+4(a2+b2)-25ab+4≥0,即证4(ab)2-33(ab)+8≥0,即证ab≤
证法二:(均值代换法)设a=
证法三:(比较法)∵a+b=1,a>0,b>0,∴a+b≥2
证法四:(综合法)∵a+b=1, a>0,b>0,∴a+b≥2
证法五:(三角代换法)∵ a>0,b>0,a+b=1,故令a=sin2α,b=cos2α,α∈(0,
【知识点归类点拔】1.不等式证明常用的方法有:比较法、综合法和分析法,它们是证明不等式的最基本的方法.(1)比较法证不等式有作差(商)、变形、判断三个步骤,变形的主要方向是因式分解、配方,判断过程必须详细叙述;如果作差以后的式子可以整理为关于某一个变量的二次式,则考虑用判别式法证.
(2)综合法是由因导果,而分析法是执果索因,两法相互转换,互相渗透,互为前提,充分运用这一辩证关系,可以增加解题思路,开扩视野.
2.不等式证明还有一些常用的方法:换元法、放缩法、反证法、函数单调性法、判别式法、数形结合法等.换元法主要有三角代换,均值代换两种,在应用换元法时,要注意代换的等价性.放缩性是不等式证明中最重要的变形方法之一,放缩要有的放矢,目标可以从要证的结论中考查.有些不等式,从正面证如果不易说清楚,可以考虑反证法.凡是含有“至少”“惟一”或含有其他否定词的命题,适宜用反证法.
证明不等式时,要依据题设、题目的特点和内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤、技巧和语言特点.
【练31】(2002北京文)数列
(1) 证明:对于
【易错点32】函数与方程及不等式的联系与转化。学生不能明确和利用三者的关系在解题中相互转化寻找解题思路。
例32、已知二次函数
【易错点分析】对条件中的不等关系向等式关系的转化不知如何下手,没有将二次不等式与二次函数相互转化的意识,解题找不到思路。
解:(1)由已知令
(2)令
(3)由(2)知
【知识点归类点拔】函数与方程的思想方法是高中数学的重要数学思想方法函数思想,是指用函数的概念和性质去分析问题、转化问题和解决问题。方程思想,是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型(方程、不等式、或方程与不等式的混合组),然后通过解方程(组)或不等式(组)来使问题获解。有时,还实现函数与方程的互相转化、接轨,达到解决问题的目的。对于不等式恒成立,引入新的参数化简了不等式后,构造二次函数利用函数的图像和单调性进行解决问题,其中也联系到了方程无解,体现了方程思想和函数思想。一般地,我们在解题中要抓住二次函数及图像、二次不等式、二次方程三者之间的紧密联系,将问题进行相互转化。
【练32】(2005潍坊三月份统考)已知二次函数
(1)
【易错点33】利用函数的的单调性构造不等关系。要明确函数的单调性或单调区间及定义域限制。
例33、记
【易错点分析】此题虽然不能求出a,b,c的具体值,但由不等式的解集与函数及方程的联系易知1,3是方程
解析:由题意知
【知识点分类点拔】函数的单调性实质是就体现了不等关系,故函数与不等式的结合历来都是高考的热点内容,也是我们解答不等式问题的重要工具,在解题过程中要加意应用意识,如指数不等式、对数不等式、涉及抽象函数类型的不等式等等都与函数的单调性密切相关。
【练33】(1)(2005辽宁4月份统考题)解关于
答案:当
(2) (2005全国卷Ⅱ)设函数
答案:x取值范围是
【易错点34】数学归纳法的应用。学生易缺乏应用数学归纳法解决与自然数有关问题的意识,忽视其步骤的规范性及不理解数学归纳法的每一步的意义所在。
例34、自然状态下的鱼类是一种可再生资源,为持续利用这一资源,需从宏观上考察其再生能力及捕捞强度对鱼群总量的影响。用
【易错点分析】本题为数列模型应用题,主要考查数列、不等式和数学归纳法。2005年高考主要涉及两种类型应用题,一种类型为概率,另一种为数列。给我们信息:数学越来越贴近生活,数学越来越强调实用性, 我们在备考中要注意对几种常见模型建模的训练;可见,高考数学越来越注意与函数、不等式、导数、向量等工具结合,这是将来高考的方向,
【解析】(I)从第n年初到第n+1年初,鱼群的繁殖量为
(II)若每年年初鱼群总量保持不变,则
(Ⅲ)若b的值使得
【知识点归类点拔】归纳是一种有特殊事例导出一般原理的思维方法。归纳推理分完全归纳推理与不完全归纳推理两种。不完全归纳推理只根据一类事物中的部分对象具有的共同性质,推断该类事物全体都具有的性质,这种推理方法,在数学推理论证中是不允许的。完全归纳推理是在考察了一类事物的全部对象后归纳得出结论来。数学归纳法是用来证明某些与自然数有关的数学命题的一种推理方法,在解数学题中有着广泛的应用。它是一个递推的数学论证方法,论证的第一步是证明命题在n=1(或n
【练34】(2005年全国卷Ⅰ统一考试理科数学)
(Ⅰ)设函数
(Ⅱ)设正数
答案:(Ⅰ)
(2)(2005高考辽宁)已知函数
(Ⅰ)用数学归纳法证明
【易错点35】涉及向量的有关概念、运算律的理解与应用。易产生概念性错误。
例35、下列命题:
①
A.1 B.
【易错点分析】共线向量、向量的数乘、向量的数量积的定义及性质和运算法则等是向量一章中正确应用向量知识解决有关问题的前提,在这里学生极易将向量的运算与实数的运算等同起来,如认为向量的数量积的运算和实数一样满足交换律产生一些错误的结论。………………………………【全文请点击下载word压缩文档】
点击下载此文件