2010年毕业班小学数学总复习资料

减小字体 增大字体 作者:本站收集整理  来源:本站收集整理  发布时间:2010-05-03 20:52:34

3. 求几个数的最小公倍数的方法是:先用这几个数(或其中的部分数)的公约数去除,一直除到互质(或两两互质)为止,然后把所有的除数和商连乘求积,这个积就是这几个数的最小公倍数。 

4. 成为互质关系的两个数:1和任何自然数互质 ; 相邻的两个自然数互质;  当合数不是质数的倍数时,这个合数和这个质数互质; 两个合数的公约数只有1时,这两个合数互质。 

(五) 约分和通分 

约分的方法:用分子和分母的公约数(1除外)去除分子、分母;通常要除到得出最简分数为止。 

通分的方法:先求出原来的几个分数分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数。

三  性质和规律

(一)商不变的规律 

商不变的规律:在除法里,被除数和除数同时扩大或者同时缩小相同的倍,商不变。 

(二)小数的性质 

小数的性质:在小数的末尾添上零或者去掉零小数的大小不变。 

(三)小数点位置的移动引起小数大小的变化

1. 小数点向右移动一位,原来的数就扩大10倍;小数点向右移动两位,原来的数就扩大100倍;小数点向右移动三位,原来的数就扩大1000倍…… 

2. 小数点向左移动一位,原来的数就缩小10倍;小数点向左移动两位,原来的数就缩小100倍;小数点向左移动三位,原来的数就缩小1000倍…… 

3. 小数点向左移或者向右移位数不够时,要用“0"补足位。 

(四)分数的基本性质 

 分数的基本性质:分数的分子和分母都乘以或者除以相同的数(零除外),分数的大小不变。 

(五)分数与除法的关系

1. 被除数÷除数=  被除数/除数 

2. 因为零不能作除数,所以分数的分母不能为零。 

3. 被除数 相当于分子,除数相当于分母。 

                                 6

四  运算的意义

(一)整数四则运算

1整数加法:

把两个数合并成一个数的运算叫做加法。 

在加法里,相加的数叫做加数,加得的数叫做和。加数是部分数,和是总数。 

加数+加数=和   一个加数=和-另一个加数 

2整数减法:

已知两个加数的和与其中的一个加数,求另一个加数的运算叫做减法。 

在减法里,已知的和叫做被减数,已知的加数叫做减数,未知的加数叫做差。被减数是总数,减数和差分别是部分数。 

加法和减法互为逆运算。 

3整数乘法:

求几个相同加数的和的简便运算叫做乘法。 

在乘法里,相同的加数和相同加数的个数都叫做因数。相同加数的和叫做积。 

 在乘法里,0和任何数相乘都得0.   1和任何数相乘都的任何数。 

一个因数× 一个因数 =积      一个因数=积÷另一个因数 

4  整数除法:

已知两个因数的积与其中一个因数,求另一个因数的运算叫做除法。 

在除法里,已知的积叫做被除数,已知的一个因数叫做除数,所求的因数叫做商。 

乘法和除法互为逆运算。 

在除法里,0不能做除数。因为0和任何数相乘都得0,所以任何一个数除以0,均得不到一个确定的商。 

被除数÷除数=商  除数=被除数÷商  被除数=商×除数 

(二)小数四则运算

1. 小数加法:

小数加法的意义与整数加法的意义相同。是把两个数合并成一个数的运算。 

2. 小数减法:

小数减法的意义与整数减法的意义相同。已知两个加数的和与其中的一个加数,求另一个加数的运算. 

3. 小数乘法:

小数乘整数的意义和整数乘法的意义相同,就是求几个相同加数和的简便运算;一个数乘纯小数的意义是求这个数的十分之几、百分之几、千分之几……是多少。 

4. 小数除法:

小数除法的意义与整数除法的意义相同,就是已知两个因数的积与其中一个因数,求另一个因数的运算。 

5. 乘方:

求几个相同因数的积的运算叫做乘方。例如 3 × 3 =32 

(三)分数四则运算 

1. 分数加法:

分数加法的意义与整数加法的意义相同。 是把两个数合并成一个数的运算。 

2. 分数减法:

分数减法的意义与整数减法的意义相同。已知两个加数的和与其中的一个加数,求另一个加数的运算。 

                                   7

3. 分数乘法:

分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。 

4. 乘积是1的两个数叫做互为倒数。 

5. 分数除法:

分数除法的意义与整数除法的意义相同。就是已知两个因数的积与其中一个因数,求另一个因数的运算。 

(四)运算定律 

1. 加法交换律:

两个数相加,交换加数的位置,它们的和不变,即a+b=b+a 。 

2. 加法结合律:

三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加它们的和不变,即(a+b)+c=a+(b+c) 。 

3. 乘法交换律:

两个数相乘,交换因数的位置它们的积不变,即a×b=b×a。 

4. 乘法结合律:

三个数相乘,先把前两个数相乘,再乘以第三个数;或者先把后两个数相乘,再和第一个数相乘,它们的积不变,即(a×b)×c=a×(b×c) 。

5. 乘法分配律:

两个数的和与一个数相乘,可以把两个加数分别与这个数相乘再把两个积相加,即(a+b)×c=a×c+b×c 。 

6. 减法的性质:

从一个数里连续减去几个数,可以从这个数里减去所有减数的和,差不变,即a-b-c=a-(b+c) 。

(五)运算法则 

1. 整数加法计算法则:

相同数位对齐,从低位加起,哪一位上的数相加满十,就向前一位进一。 

2. 整数减法计算法则:

相同数位对齐,从低位加起,哪一位上的数不够减,就从它的前一位退一作十,和本位上的数合并在一起,再减。 

3. 整数乘法计算法则:

先用一个因数每一位上的数分别去乘另一个因数各个数位上的数,用因数哪一位上的数去乘,乘得的数的末尾就对齐哪一位,然后把各次乘得的数加起来。 

上一页  [1] [2] [3] [4] [5] [6] [7] [8]  下一页

Tags:

作者:本站收集整理
  • 好的评价 如果您觉得此文章好,就请您
      0%(0)
  • 差的评价 如果您觉得此文章差,就请您
      0%(0)

文章评论评论内容只代表网友观点,与本站立场无关!

   评论摘要(共 0 条,得分 0 分,平均 0 分) 查看完整评论