“探索多边形的内角和”教学设计

减小字体 增大字体 作者:本站收集整理  来源:本站收集整理  发布时间:2009-08-28 09:10:39

 (本课选自北师大版义务教育课程标准实验教科书《数学》八年级上册第4章第6节第1课时.)
  
  一、教材和学情分析
  
  “探索多边形的内角和与外角和”第1课时主要是学习用不同方法探索多边形的内角和公式,它既是前一节知识的延伸与拓展,也为下一节学习用正多边形拼地板奠定了基础,具有承上启下的作用.同时这些知识在生产和生活中经常用到,掌握这部分知识对学生参加实践活动具有实际意义.同时这节课无论在知识上还是在培养学生解决实际问题能力方面都起着重要作用.而学生对三角形的知识已经很熟悉,虽然有些学生对三角形的内角和公式有所遗忘,但只要重新复习,很快也能回想起来.所以学生在观察、联想三角形内角和的基础上用分割的方法能得到多边形内角和公式.
  
  二、教学目标
  
  1.知识与能力:理解多边形、多边形的内角、外角和对角线的概念;掌握多边形的内角和公式,并能用它来解决有关简单计算问题.
  2.过程与方法:通过试一试得出多边形的概念,培养学生的类比能力;探索并了解多边形的内角和公式,进一步发展学生的说理和简单推理的意识及能力;通过探索多边形的内角和公式,感受数学思考过程的条理性;探索多边形内角和公式,让学生逐步从实验几何过渡到论证几何.
  3.情感与态度:通过师生共同活动,训练学生的发散性思维,培养学生的创新精神;进一步发展学生合理推理的意识和主动探索的习惯,认识到数学与现实生活紧密联系.
  
  三、设计思路
  
  本节课采用“问题——探究——发现——应用”的模式展开,通过设置的问题情景,引起学生对研究多边形内角和、外角和这一问题的关注.通过复习三角形的概念,由学生类比得出四边形、多边形等概念.通过小组活动,采用分割图形的方法得出四边形、五边形等平面图形的内角和与边数的关系,逐步深化得出多边形内角和公式.整个教学过程从特殊的四边形入手,求得内角和,再分别求五边形、六边形、七边形的内角和,从中探究出内角和公式.从研究的形式看,主要是以问题的提出,由浅入深,由易到难,结合小组讨论,由学生归纳总结,最后得出内角和公式.
  
  四、教学反思
  
  本节课把学生熟悉的场景引入课堂,为学生提供丰富多彩的学习素材,在教学上充分发挥小组合作的优势,力求使每个学生都积极参与,都有所收获.学生能主动地从事观察、实验、猜测、验证、推理与交流等探索实践活动,并能应用所学数学知识去分析和解决实际问题.在教师的指导下,他们利用已有的知识、经验、背景材料等,通过自主探究、合作交流,进行“再创造”、“再发现”而获得所学数学知识.在教学中我注重了知识学习的结果,但更注重探索过程,并在这个过程中培养学生的独立思考、大胆创新的个性品质.同时也做到了学习途径和手段多样性,交往方式多维性,学习评价多元性.
  不足之处在于教学过程中由于学生的差异,有的学生未能参与到讨论中去,有的学生讨论流于形式.再有怎样保证每个人都有收获,讨论到什么程度适度,还存在困惑,还有待于以后的教学中逐步积累经验.
  
  五、教学过程
  

Tags:

作者:本站收集整理
  • 好的评价 如果您觉得此文章好,就请您
      0%(0)
  • 差的评价 如果您觉得此文章差,就请您
      0%(0)

文章评论评论内容只代表网友观点,与本站立场无关!

   评论摘要(共 0 条,得分 0 分,平均 0 分) 查看完整评论