中查找“角平分线 教案设计”更多相关内容
中查找“角平分线 教案设计”更多相关内容
- ·上一篇文章:线段的垂直平分线 教案设计
- ·下一篇文章:花边有多宽 教案设计
角平分线 教案设计
角平分线
教学目标:
1.要求学生掌握角平分线的性质定理及其逆定理——判定定理,会用这两个定理解决一些简单问题。
2.理解角平分线的性质定理和判定定理的证明。
3.能够作已知角的角平分线,并会熟练地写出已知、求作和作法,可以说明为什么所作的直线是角平分线。
教学重点:角平分线性质定理及其逆定理。
教学难点:掌握角平分线性质定理及其逆定理并进行证明。
教学过程:
一、角平分线性质定理
1.让学生到黑板上画出他们收集到的日常生活中应用角平分线的例子,并分别说出它们的作用。
2.高度评价学生的参与热情和学习成果,激励学生继续努力。尤其是对于其中很有创意的发现,可以以该学生名字命名,以此鼓励、保护学生的积极性。
3.综合学生的发现,对于其中应用角平分线性质的几个例子,让学生猜想:它们应用的性质有没有什么相同的地方?
4.让学生说出他们的猜想,并说明他们怎么想到的,暴露学生的思维过程,一是为了让学生理顺自己的思路,二是可以找到学生思维的进程。
5.让学生口述他们的结论,在口述的时候注意纠正学生不正确的数学语言,锻炼学生的数学语言表达能力,同时使学生加深对结论的理解。
6.提醒学生在猜测了数学结论之后,下一步该干什么了?在此时不直接提出猜测需要证明的要求,让学生自己意识到这样做的必要性,培养学生养成说理的好习惯。数学的兴趣,同时体会了数学和现实生活的联系。
定理:角平分线上的点到这个角两边的距离相等。
证明:如图OC是∠AOB的平分线,点P在OC上
PD⊥OA,PE⊥OB,垂足分别为D、E,
∵∠1 =∠2,OP = OP,
∠PDO =∠PEO = 90°
∴△PDO≌△PEO(AAS)
∴PD = PE(全等三角形的对应边相等)
二、角平分线判定定理
1.从学生收集的生活中角平分线应用的例子提出问题:大家都知道了这几个例子中应用了角平分线的性质,那你如何说服别人,你说的那条线就是角平分线呢?引导学生从判断的角度思考问题。
2.启发学生思考:要说服别人你说的那条线就是角平分线,是不是就是要证明它是角平分线?那现在的问题是不是就转化成了:你如何证明或者说判定它是角平分线?都需要什么条件?
3.引导学生回忆有关线段垂直平分线的知识:它的判定定理和性质定理有什么关系?在这里,角平分线的性质定理和要证明的命题是不是也有这个关系?
4