芒德勃罗:沿着博物学传统走来
在这封信的结尾芒氏写道:“扩散置限凝聚(DLA)及其各个变种确实只是被发现 和描述,还 没有完全解释清楚。描述先于理论是科学发展的通常模式。但是,看看在短短不到6年的时间里已变得彻底可理解的所有硬科学!看看关于逾渗网瀑涨的知识,以及分形形状对物理学 所产生的奇妙 的、多样性的影响和修正吧!” 优先权问题
芒德勃罗卷入的第二个争论远胜过第一个。这次发难者是早年毕业于圣克鲁兹加 州大学、现任圣路易斯州华盛顿大学的数学家克兰茨(Steven G.Krantz),他的研究方向是函数论和复 分析的几何方法。此人爱好广泛,后来(1990年)还在同一刊物上 发表一篇《数学秩事》,专门讲述了柏格曼(Stefan Bergman,1898-1977)、贝塞克维奇(Abram S.Besicovitch,1891-19 70)、哥德尔(Kurt Go……del,1906-1978)、莱弗席兹(Solomon Lefschetz,1884-1972)和 维纳的一些令人发笑的故事。
好在那些数学家早就去世了,讲述的故事真假死无对证,不过这一次(1989年)他 却惹了麻烦 .1988年秋克兰茨想对两本书《分形图象科学》和《分形之美》作一评论,先征得了美国数学会会刊书评编辑的同意。编辑斯托特(Edgar Lee Stout)很快收到稿子并同意发表。校样 1989年1月中 旬出来后克兰茨故意复印了一些让人们传看,特别送给芒德勃罗一份。芒德勃罗阅毕表示强烈反对,并写了一篇反驳文章。后来数学会怕惹事,建议克兰茨撤回书评稿另 投他处。克 兰茨也非常生气,堂堂美国数学会怎么能出尔反尔。最后书评连同芒德勃罗的反驳一同刊登在很有名的《数学信使》(The Mathematical Intelligencer)杂志1989年第 4期上。[14]
克兰茨的书评写得很长,只是稍带评论一下提到的那两部当时影响极大的书,文 章的中心是 冲芒德勃罗和分形几何学来的。开篇温和地从公众理解数学谈起,不久就到了关键:“但是,目前数学中有一项进展由于其潜在的易理解性,可能使其他数学宣传相形见绌,这就是分 形理论。尽 管现在称作分形集合的东西已早被研究了(如在调和分析、几何测度论和奇异性理论中),但芒德勃罗起了‘分形’这个词,并使之流行起来。”
接着引用了《分形之美》中芒德勃罗一段得意的、极容易引起反感的话,然后评 论说,有人 竟认为分形是自微积分以来最伟大的数学思想。但他认为根本不是这么回事。“像微积分的创立者们一样,分形几何的奠基人也造就了一批有志于此事业的中坚队伍。他们不会因为缺 乏严格性而 受阻,因为他们分享着最近300年来辛勤积累的智慧,即使到目前还没有普遍接受的‘分形’定义。情况似乎是,他们不证明定理(显然分形几何学家们不证明定理)时,是 不需要定义 的。分形几何与微积分的显著差别是,分形几何没有解决任何问题。我不清楚它是否创造了任何新的东西。”可以看出火药味是颇浓的,而这里见到的还是修改后、语气有 所缓和的稿 子。
克兰茨还特别提到要把目前不适当归于“分形”标题或者大伞之下的真正数学拿 走,至少是 划清界线,他认为分形几何学只是一个空架子。他认为像“轮廓使人想起一只狗的头,上部 像尼斯湖的妖怪。在自然界中其分维数D比欧氏空间维数E要大0.2到0.3的形状似乎特别多。典型的海岸线 的分维大约是1.2,地形约为2.2,而云彩约为3.3”这类描述根本不像是科学。“当人们翻开这两本书时,似乎分形几何是一门科学,显然指数学。但是我在两本书 中任何一处 看不到一个定理,也几乎没有定义。如前面指出的,对‘分形’一词没有明确的定义。作为一个数学家,我觉得这不是一个好兆头。”“我不认为芒德勃罗证明了任何定理 作为他的研 究结果,不过这也并非他所声称要做的事。用他自己的话,他是一位科学哲学家。”“芒德勃罗建议分形几何学家也利用计算机作图来提出假设和猜想。但作分形研究的人 提出的假设 和猜想是就事论事的,他们产生图形是为了得到更多的图形,而不是为了得到更深刻的思想。即使这些图形偶然会使熟练的数学家证明出好的定理,这似乎是碰碰运气而已 .”
克兰茨的书评特别评论了关于复迭代的研究,他故意抬一个贬一个,认为道阿迪 和哈伯德(J .H.Hubbard,道阿迪以前的学生)的工作继承了朱丽亚和法图(Pierre Fatou,1978-1979)的 传统,是真正 出色的数学。“‘芒德勃罗集(简称M集)’并不是由芒德勃罗发明的,很清楚在”芒德勃罗集“这个词被 制造几年之前,文献中就清楚地出现过(指布鲁克斯(Robert Brooks)等人1978年的会议论文,1981年出版)。事实上法图和朱丽亚早就研究了迭代函数 z→z2+c,如今 芒德勃罗至少是由于与这此有关,而得到不少荣誉。”克兰茨还就“ 外尔斯特拉斯-芒德勃罗函数”的命名提出疑问,不过这算不了什么,芒氏也巧妙地作了回 答:实际上作 这样称呼的是著名科学家伯瑞(Michael Berry),WM函数具有自仿射性质,而W函数不具有。
克兰茨认为虽然道阿迪等对动力系统、迭代函数作了出色研究,“但是这些数学 家们不研究 分形,他们证明漂亮的定理。分形几何之所以得到数学界如此高的赞扬,实际上是间接称颂道阿迪、哈伯德、沙斯顿(Willian Thurston)和其他人的工作。”“我发现麻烦的是,公众 对于当今数 学家们正在从事的工作的理解大部分是由于读了关于分形的书,读了格莱克的《浑沌》(Chaos)一书,读了那些包含长期间的猜测和不正确的证明的书籍,来获得的。 ……这两部书造成 了可怕的误导。分形理论和浑沌理论还处于襁褓中。现在就讲述它们是否能篷勃发育为成熟的学科为时尚早。”[14]
克兰茨的文章还挑起了另一个敏感问题:“对分形理论的过分宣传导致了对数学 发展的有害 的官方政策。在一些圈子中,得到购买产生分形图形的硬件的经费,比支持研究代数几何来得容易。代数几何是经得住时间考验的,而分形几何还没有,人们一定会奇怪,是怎样的考 虑导致这样 的经费资助决策。我个人的看法是,官僚机构比较容易认同对硬件的投资而不是对思想的投资。无论怎样,对这种政策造成的长期效果的预测令人沮丧。”。最后的结论是 :“关于它 们形成一门新的学科,或者形成自然界中一种新的分析语言这一断言,我想说,分形理论在这方面所作出的贡献是非本质的。总之,皇帝没有着穿衣。”
克兰茨的批评十分坦率,有不少也的确击中要害,但总体上似乎过火了,多少有 些“红眼病 ”之嫌。我们还是看看芒德勃罗的反应吧。
他先作了一个有趣的开场白:“看看数学的历史,数学界回到了具有灵活性和多 元论的时代 ,每个人都有权力表明他的心情。”之后着重就“芒德勃罗集”的优先权作出了反应,这对他来说的确很重要,公众(特别是能够上微机作图的人)主要是由芒德勃罗集而知道分形的。 自然扯到布 鲁克斯与马蒂尔斯基(J.Peter Matelski)1978年写成1981年发表出来的文章(刊于一部论文





