圆的认识(人教版) 六年级数学教案
3.教学例12。
计算:8760÷120=
引导学生讨论:
(1)被除数和除数末尾有0的除法笔算,有没有简便的算法?
(2)为什么被除数和除数末尾的零都可以划去?
(3)(出示876000÷1200)这道题怎样简算?被除数末尾有三个零,计算时为什么只去掉两个零而不去掉三个零?
[这道题目的出现,作为例题的补充,起到画龙点睛的作用。]
4.做一做。
计算:8060÷620 13500÷270
5.小结、质疑。
三、巩固练习
1."猴王分饼"的故事中,猴王是运用什么规律教育帮助贪吃的小猴子肥肥的?
[前后照应,很有必要。]
2.计算下面各题的商。
28÷14=( )
(28×3)÷(14×3)=( )
280÷140=( )
(28÷7)÷(14÷7)=( )
56÷28=( )
算完后,请算得快的同学说一说,为什么算得这么快?商为什么都是2?
[算后提问,帮助学生消化、理解商不变的性质。]
3.根据"300÷60=5",分别在○里填上运算符号,在□里填上适当的数。
(1)(300÷5)÷(60○□)=5
(2)(300○□)÷(60×2)=5
填写后,指导学生用数学语言表达这两题的题意。即,(1)被除数缩小5倍,要使商不变,除数应当( );(2)除数扩大2倍,要使商不变,被除数应当( )。
4.在( )里填商。
(1)24÷4=6( )
(2)24×2÷4=( )
(3)24÷(4×2)=( )
(4)(24×2)÷(4×3)=( )
(5)(24÷6)÷(4÷2)=( )
讨论:(2)式和(1)式比:被除数扩大2倍,除数不变,商也扩大2倍;(3)式与(1)式比:被除数不变,除数扩大2倍,商缩小2倍。可见,要使商不变,第一个条件是:被除数和除数必须"同时"扩大或缩小。
继续把(4)式与(1)式比,(5)式与(1)式比,得出商不变的第二个条件是:被除数和除数扩大或缩小的倍数必须"相同"。
[整个练习设计,由浅入深,由易到难,特别是在商的变化中巩固商不变的性质,使学生逐步加深对商不变性质的理解,并能够灵活运用。]
四、课堂作业
书本练习二十第1-3题。
五、课堂小结
Tags:
作者:本站收集整理评论内容只代表网友观点,与本站立场无关!
评论摘要(共 0 条,得分 0 分,平均 0 分)
查看完整评论





