(整数值)随机数(random numbrrs)的产生
预设学生回答一:采用简单随机抽样(抽签法)方法:如摸球法或转盘法 我们把80个大小形状等均相同的小球标上00,01,02,…,78,79号签,放入一个不透明的袋中,把它们充分搅拌,然后每次从中摸出一个球,一共摸10次球,就得到一组抽样数据。
预设学生回答二:采用简单随机抽样方法(随机数表法)等。
教师可展示:采用简单随机抽样方法(随机数表法):比如给出第6行到第8行的随机数表:
16 22 77 94 39 49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 26 34 91 64
84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76
63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 33 21 12 34 29 78 64 56 07 82
显示随机数表设计意图:是让学生脑海中有两位随机数这样一种直观印象,为后面问题6中的三天恰有两天下雨这一事件,如何想到用三位随机数组模拟作第一次小铺垫。
教师:每次摸出一个球,这个球上的数就是随机数。由于随机数表的每个数都是随机产生的,我们也可以利用随机数表产生随机数。随机数就是在一定范围内随机产生的数,并且得到这个范围内每一数的机会一样。引入课题,板书本节课题。
问(2):假如我们需要的是从8000只袋中抽取600袋进行抽样调查,你又打算怎么办?
情境2:在第一节中,同学们做了大量重复的试验,比如抛硬币和掷骰子的试验,用频率估计概率,假如现在要作10000次试验,你打算怎么办?有的同学可能觉得这样做试验花费时间太多了,有没有其他方法可以代替试验呢?
设计意图:通过情境2的问题让学生进一步体会当需要随机数的量很大时,用手工试验产生随机数速度太慢,从而说明利用现代信息技术的重要性,也就很自然转到利用计算器或计算机产生随机数的必要性。在问题的思考过程中让学生自我发现问题,主动解决问题的欲望。
师生活动:教师在表述问题的过程中,学生思考讨论,急于寻找解决问题的方案。
(三)操作实践,了解概念
问题1:利用手工试验产生随机数的速度毕竟比较慢,而且费时费力,你有其它
方法来产生随机数吗?
设计意图:让学生了解总体个体数不是很大时,可以利用手工随机试验的方法,如果需要随机数的量很大,随机试验的方法不是很方便,速度太慢。促使学生去探求更方便的方法,从而培养学生在学习中善于发现问题、解决问题的能力。让学生在已有的环境中进一步寻找解决问题的途径,激发学生学习新知识的热情和兴趣。现代信息技术的高速快捷是学生所熟悉的工具,学生很容易想到利用计算器来产生随机数。学生最熟悉就是计算器,但对计算器的随机函数的操作对于学生来说,是比较陌生的内容,很难找到一个思考的方向。所以以老师介绍计算器的操作为主,了解随机函数的原理后,不需要让学生讨论,而且有些计算器操作学生只要看说明就可操作。