两角和与差的三角函数,解斜三角形·三角变换中的最值问题

减小字体 增大字体 作者:本站收集整理  来源:本站收集整理  发布时间:2011-02-12 15:36:40

函数转化为代数式求解,在求解最值问题时要恰当选取代数与三角两种工具,并能互相转化.

以上我们研究了函数式的最值问题,下面我们看几个最值应用问题,探讨如何利用三角这一工具解决问题.

例4  欲在半圆形铁皮(如图1)截取矩形,如何截取利用率最高.(半径为R)

分析:矩形ABCD的面积取决于CD的位置,而CD∥AB,故C点位置一旦取定,则D点位置也随之而定.C点在圆周上,连结圆心O与C点,则∠COB的大小便确定了C点的位置,故引入∠COB作为变量写出目标函数.

S=Rsinα·2Rcosα=R2sin2α,

利用三角变换解最值应用问题的一般步骤是:1°全面分析题目,选择恰当的自变量;2°列出目标函数,确定自变量取值范围;3°利用三角变换公式求最值.

若我们把半圆形铁皮改为扇形铁皮,如何求解呢?请同学们练习.

练习4  在半径为R,中心角为α的扇形铁皮中(如图2)截取矩形,何时利用率最高.

(此题可利用正弦定理,即△ABC中,A,B,C为三内角,a,

(给出时间让学生独立思考,请学生回答.)

生:与例4相似的有矩形ABCD面积由CD位置决定,CD∥AB,C点位置决定了矩形ABCD的面积,而∠COB的大小决定了C点位置.故引入∠COB为变量.这个题目与例4的区别在于目标函数较例4复杂.

解  设∠COB=θ,θ∈(0,α).

在Rt△COB中,|BC|=Rsinθ,在△COD中,∠CDO=π-α,∠DOC=α-θ,由正弦定理,

师:四个题目还可以略加改动.

练习5在中心角为α半径为R的扇形中如图截取矩形(如图3),何时利用率最高.

请同学们课下解决,并且总结这类有动点在圆周上的题目的解法.

下面我们再看一个例题:

例5  边长为α的正三角形ABC,其中心为O,过O的直线MN

分析:OM与ON的长度与过O的直线MN的倾斜程度有关,故引入∠AOM为变量,利用解三角形的知识表示出|OM|及|ON|,求解最值.

解  设∠AOM=α.

这个题目仍然是引入了角做变量,利用三角变换这一工具求解最值.这个题目限定自变量的取值范围直接影响结果,十分重要.

下面我们小结一下这节课.这节课我们主要研究了两个问题:即函数式的最值问题及最值应用问题.函数式的最值问题是最值应用问题的基础,解决函数式的最值问题的关键在于灵活地选用代数与三角两种工具,树立转化的数学思想,同时应注意一些典型方法的总结.解决最值应用问题的关键在于充分分析题目,选择恰当的自变量,列出相对简单的目标函数以便于求解最值.

作业

1.求下列函数的值域.

上一页  [1] [2] [3]  下一页

Tags:

作者:本站收集整理
  • 好的评价 如果您觉得此文章好,就请您
      0%(0)
  • 差的评价 如果您觉得此文章差,就请您
      0%(0)

文章评论评论内容只代表网友观点,与本站立场无关!

   评论摘要(共 0 条,得分 0 分,平均 0 分) 查看完整评论