数列综合 2011年高考复习专题
(b>0且b≠1,b,r均为常数)的图像上。
(1)求r的值;
(2)当b=2时,记
(n∈N+),求数列
的前n项和
。
分析:本题考查
与
的关系,即由
求
,以及特殊数列求和。
解析:
(1)由已知
∴a1=S1=b+r,a2=S2-S1=b2-b,a3=S3-S2=b3-b2
∵
是等比数列,∴
∴(b2―b)2=(b+r)(b3―b2),化简得(1+r)(b-1)·b2=0
∵b>0且b≠1,∴1+r=0,r=-1
(2)由(1)知
∴a1=S1=1,
∴
,
∴
①
②
①-②:
∴
反思:错位相减求和时注意运算。
4.曲线C:y=(x+a)3(a≠0),以P0(0,a3)为切点,作曲线C的切线交x轴于Q1,过Q1作x轴的垂线交曲线C于P1(x1,y1);以P1(x1,y1)为切点作曲线C的切线交x轴于Q2,过Q2作x轴的垂线交曲线C于P2(x2,y2);如此继续下去,得到点列
(1)求
与
的关系(n≥2);
(2)求
(1)求r的值;
(2)当b=2时,记
(n∈N+),求数列
的前n项和
。分析:本题考查
与
的关系,即由
求
,以及特殊数列求和。解析:
(1)由已知
∴a1=S1=b+r,a2=S2-S1=b2-b,a3=S3-S2=b3-b2
∵
是等比数列,∴
∴(b2―b)2=(b+r)(b3―b2),化简得(1+r)(b-1)·b2=0
∵b>0且b≠1,∴1+r=0,r=-1
(2)由(1)知
∴a1=S1=1,
∴
,
∴
①
②①-②:
∴
反思:错位相减求和时注意运算。
4.曲线C:y=(x+a)3(a≠0),以P0(0,a3)为切点,作曲线C的切线交x轴于Q1,过Q1作x轴的垂线交曲线C于P1(x1,y1);以P1(x1,y1)为切点作曲线C的切线交x轴于Q2,过Q2作x轴的垂线交曲线C于P2(x2,y2);如此继续下去,得到点列
(1)求
与
的关系(n≥2);(2)求

Tags:
作者:本站收集整理评论内容只代表网友观点,与本站立场无关!
评论摘要(共 0 条,得分 0 分,平均 0 分)
查看完整评论





