2009年高考数学试题命题预测及名师指导
2.提炼思想,发展思维
对数学思想的考查是高考一贯坚持的原则。近年来,大家共识的数学思想有七种:函数与方程的思想,数形结合的思想,分类与整合的思想,化归与转化的思想,特殊与一般的思想,有限与无限的思想,或然与必然的思想。加强对数学思想方法的考查,对于引导学生深刻领悟数学学科特点,学会数学地提出问题、分析问题和解决问题,发展学生的理性思维,培养学生的能力,起着至关重要的作用。因此,在高考复习中,应善于提炼数学思想,并能运用数学思想方法有效地解决相关问题。
3.注重交汇,变换视角
《考试大纲》明确要求,要从学科的整体高度和思维价值的高度考虑问题,在知识网络交汇点设计试题,使对数学基础知识的考查达到必要的深度。随着新课程改革的不断深入,知识网络的交汇点正在不断丰富,函数导数方程与不等式、平面向量与三角函数,解析几何与平面向量、解析几何与平面几何、概率统计与计数原理,已毫无争议地成了新的知识网络交汇点,因而理所当然地成了高考命题的新热点。这些新热点与“数列函数与不等式、空间图形与平面图形、三角函数与三角变换”等原有的知识网络的交汇点一样,在2009年乃至今后的高考命题中必将越来越受到命题专家们的重视和青睐。因此,高三复习要善于挖掘新的知识网络交汇点,善于捕捉高考命题新热点。
4.新旧结合,推陈出新
今年和明年正是大纲教材向课标教材过渡的时期。为了支持新一轮课程改革,高考数学试题的命制,将适度吸收新课程的理念。例如把平面几何中的面积问题与解析几何综合考查就是一个很好的例题。此外,课标教材选修2-2中的合情推理也很容易被大纲版试题命制所吸纳。这种试题往往能较好地体现新旧知识的交融,新旧结合,推陈出新的原则跃然纸上。
5.适度创新,开发潜能
高考中命制一定的创新问题是时代发展的需要。高考数学创新试题常见的有自主定义型、直觉判断型、类比推理型、归纳猜想型、探索发现型、研究设计型六类。创新问题的求解一般没有现成的公式、法则、定理等供直接套用,需要通过对问题的阅读理解,从中学习并领悟出解决问题的知识,自行设计解决问题的思路和方法,体现思维的深度和广度,由此检测考生的自主学习能力、创造性地解决问题的能力以及进一步发展的潜能。显然,这在思维上具有较高的要求。因此,我们应当加强针对这类问题的专项训练,只有这样,才能有效地培养学生的创新意识,提高学生的潜在能力。
第二章 数学科考试大纲导读
对知识要求导读:
数学科的考试内容以高中阶段的数学内容为主,对知识的考查从低到高分为三个层次,依次为:了解、理解和掌握、灵活和综合运用,并且高一级的要求包含低一级的层次要求。
在命题范围内,常见的数学方法如:配方法、换元法、待定系数法、数形结合法等等;常用的逻辑推理如:分析法、综合法、类比法、反证法、归纳和演绎法等等都是高考中考查的主要内容。常用的数学思想如:函数与方程思想、转化与化归思想、数形结合思想、分类讨论思想等等都会通过具体的试题来考查,同时也测试考生数学能力的掌握程度。而淡化特殊技巧,重在通性通法的掌握与灵活运用是考试内容的主体思想。
对能力要求导读:
数学科的考试能力是指思维能力、运算能力、空间想象能力、实践能力和创新能力。
在命题范围内,常将这几大能力贯穿于整个试卷。要求对给出问题或材料通过空间想象、直觉猜想,归纳抽象,运算求解,对公式的变式使用、数据的处理,整体代入、估算等简捷的运算,对图形进行直观想象,图形拆分、重组等等,运用所学知识来解决问题,而创新意识又是理性思维的高层次的表现,这些都会通过试题来考查考生的数学能力。
如何在冲刺阶段备考
细研考试大纲,构建知识网络,关注生活现象,克服紧张情绪,以平和的心态参加考试。
Ⅰ.考试性质
普通高等学校招生全国统一考试是由合格的高中毕业生和具有同等学力的考生参加的选拔性考试,高等学校根据考生的成绩,按已确定的招生计划,德、智、体全面衡量,择优录取,因此,高考应具有较高的信度、效度,必要的区分度和适当的难度。
Ⅱ.考试要求
《普通高等学校招生全国统一考试大纲(文科·2009年版)》中的数学科部分,根据普通高等学校对新生文化素质的要求,依据国家教育部2002年颁布的《全日制普通高级中学课程计划》和《全日制普通高级中学数学教学大纲》的必修课与选修Ⅰ的教学内容,作为文史类高考数学科试题的命题范围。
数学科的考试,按照“考查基础知识的同时,注重考查能力”的原则,确立以能力立意命题的指导思想,将知识、能力与素质的考查融为一体,全面检测考生的数学素养。
数学科考试要发挥数学作为基础学科的作用,既考查中学数学的知识和方法,又考查考生进入高校继续学习的潜能。
一、考试内容的知识要求、能力要求和个性品质要求
1.知识要求
知识是指《全日制普通高级中学数学教学大纲》所规定的教学内容中的数学概念、性质、法则、公式、公理、定理以及其中的数学思想和方法。
对知识的要求,依次为了解、理解和掌握、灵活和综合运用三个层次。
(1)了解:要求对所列知识的含义及其相关背景有初步的、感性的认识,知道这一知识内容是什么,并能(或会)在有关的问题中识别它。
(2)理解和掌握:要求对所列知识内容有较深刻的理论认识,能够解释、举例或变形、推断,并能利用知识解决有关问题。
(3)灵活和综合运用:要求系统地掌握知识的内在联系,能运用所列知识分析和解决较为复杂的或综合性的问题。
2.能力要求
能力是指思维能力、运算能力、空间想象能力以及实践能力和创新意识。
(1)思维能力:会对问题或资料进行观察、比较、分析、综合、抽象与概括;会用类比、归纳和演绎进行推理;能合乎逻辑地、准确地进行表述。
数学是一门思维的科学,思维能力是数学学科能力的核心,数学思维能力是以数学知识为素材,通过空间想象、直觉猜想、归纳抽象、符号表示、运算求解、演绎证明和模式构建等诸方面,对客观事物中的空间形式、数量关系和数学模式进行思考和判断,形成和发展理性思维,构成数学能力的主体。
(2)运算能力:会根据法则、公式进行正确运算、变形和数据处理;能根据问题的条件和目标,寻找与设计合理、简捷的运算途径;能根据要求对数据进行估计和近似计算。
运算能力是思维能力和运算技能的结合。运算包括对数值的计算、估值和近似计算,对式子的组合变形与分解变形,对几何图形各几何量的计算求解等。运算能力包括分析运算条件、探究运算方向、选择运算公式、确定运算程序等一系列过程中的思维能力,也包括在实施运算过程中遇到障碍而调整运算的能力以及实施运算和计算的技能。





