2009年高考数学试题命题预测及名师指导
(3)掌握两角和与两角差的正弦、余弦、正切公式。掌握二倍角的正弦、余弦、正切公式。
【导读】三角函数的化简与求值类型的高考题型非常丰富,求值与化简过程中应当注意同名三角函数与同角三角函数的化归。不仅要能熟练推证公式(建议自己推证一遍所有公式)、熟悉公式的正用逆用,还要熟练掌握公式的变形应用;注意拆角、拼角技巧,如α=(α+β)-β,2α=(α+β)+(α-β)等;注意倍角的相对性,如3α是3a/2的倍角;注意公式的变形使用,弦切互化、三角代换、消元是三角变换的重要方法,要尽量减少开方运算,慎重确定符号。注意“1”的灵活代换,如1=sin2α+cos2α=sec2α-tan2α=csc2α-cot2α=tanα·cotα.应用诱导公式,重点是“函数名称”与“正负号”的正确判断,一般常用“奇变偶不变,符号看象限”的口诀。利用同角三角函数的关系及诱导公式进行化简、求值、证明时,要细心观察题目的特征,注意培养观察、分析问题的能力,并注意做题后的总结,总结一般规律。如:“切割化弦”“1的巧代”,sinα+cosα、sinαcosα、sinα-cosα这三个式子间的关系。最后要时时注意角的范围的讨论。
公式应用讲究一个“活”字,即正用、逆用、变形用,还要创造条件应用公式,如拆角、拼角技巧等。
【试题举例】
“θ=2π/3”是“tanθ=2cos(π/2+θ)”的( )
A.充分而不必要条件
B.必要而不充分条件
C.充分必要条件
D.既不充分也不必要条件
【答案】A
【解析】tanθ=tan(2/3π)=-√3,2cos(π/2+θ)=2sin(-θ)=-2sin(2/3π)=-√3可知充分成立,当θ=0°时tanθ=0,2cos(π/2+θ)=0可知不必要。故选A.
(4)能正确运用三角公式进行简单三角函数式的化简、求值和恒等式证明。
【导读】化简要求:
(1)能求出值的应求出值。
(2)使三角函数种数尽量少。
(3)使项数尽量少。
(4)尽量使分母不含三角函数。
(5)尽量使被开方数不含三角函数。
常用方法:
(1)直接应用公式。
(2)切割化弦,异名化同名,异角化同角。
(3)形如cosαcos2αcos22α…cos2nα的函数式,只需将分子、分母分别乘以2n+1sinα,应用二倍角正弦公式即可。
注意事项:
(1)公式的熟与准,要依靠理解内涵,明确联系应用,练习尝试,不可机械记忆。
(2)要重视对遇到的问题中角、函数名及其整体结构的分析,提高公式选择的恰当性,有利于缩短运算程序,提高学习效率。
(3)角的变换体现出将未知转化为已知的思想方法,这是解决三角中关于角的变换问题常用的数学方法之一。
【试题举例】
sin15°cos75°+cos15°sin105°等于( )
A.0 B. 1/2 C. √3/2 D.1
【答案】D
【解析】sin15°cos75°+cos15°sin105°=sin(15°+75°)=1,选D.
(5)理解正弦函数、余弦函数、正切函数的图象和性质,会用“五点法”画正弦函数、余弦函数和函数y=Asin(ωx+φ)的简图,理解A、ω、φ的物理意义。
【导读】三角函数图象的平移变换及伸缩变换是历届高考的必考知识点,应当注意应用逆向思维的方法去验证所得的结论。
三角函数图象是三角函数考查的重要内容,通过图象及方程可以用函数的观点进一步研究其图象与性质。本节是图象和性质的综合应用的内容,命题主要突出数形结合思想、化归转化思想、分类讨论等数学思想方法,并注意三角知识的载体作用,注意和其他知识间的关联;判断y=-Asin(ωx+φ)(ω>0)的单调区间,只需求y=Asin(ωx+φ)的相反区间即可,一般常用数形结合。而求y=Asin(-ωx+φ)(-ω<0)单调区间时,则需要先将x的系数变为正的,再设法求之。三角函数是函数的一个分支,它除了符合函数的所有关系和共性外,还有它自身的属性;求三角函数式的最小正周期时,要尽可能地化为只含一个三角函数,且三角函数的次数为1的形式,否则很容易出现错误。
注意点:1.数形结合是数学中重要的思想方法,在中学阶段,对各类函数的研究都离不开图象,很多函数的性质都是通过观察图象而得到的。
2.作函数的图象时,首先要确定函数的定义域。
3.对于具有周期性的函数,应先求出周期,作图象时只要作出一个周期的图象,就可根据周期性作出整个函数的图象。
4.求定义域时,若需先把式子化简,一定要注意变形时x的取值范围不能发生变化。
5.解析式的求解中应用好图象,紧扣五点中的第一个零点,要注意图象的升降情况,注意数形结合的思想。
【试题举例】
已知函数f(x)=sin(ωx+π/3)(ω>0)的最小正周期为π,则该函数的图象( )
A.关于点(π /3,0)对称 B.关于直线x=π/4对称
C.关于点(π/4,0)对称 D.关于直线x=π /3对称
【答案】A
【解析】由函数f(x)=sin(ωx+π/3)(ω>0)的最小正周期为π得ω=2,由2x+π/4=kπ得x=1/2kπ-π/6 对称点为(1/2kπ-π/6,0)(k∈Z),当k=1时为(π/3,0),选A.
(6)会由已知三角函数值求角,并会用符号arcsinx、arccosx、arctanx表示。
【导读】解决给式(值)求值问题常注意:注意整体思想在解题中的应用;①要注意观察和分析问题中各角之间的内在联系,把“待求角”用“已知角”表示出来.②要注意条件中角的范围对三角函数值的制约作用,确定所涉及的每一个角的范围,以免出现增(失)解。
根据条件计算某个角的三角函数值或者求某个三角式子的值或者求某个角的大小等,在考试中选择、填空、解答题均可出现,并且题目大都有一定的技巧性与灵活性。
【试题举例】
在△ABC中,角A,B,C所对的边分别为a,b,c,若a=1,b=√7,c=√3,则B= .
【答案】5π/6
【解析】由正弦定理得cosB=-1+3-7/2*1*√3=-√3/2,所以B=5π/6.
(7)掌握正弦定理、余弦定理,并能初步运用它们解斜三角形。
【导读】除了正余弦定理外,还应掌握三角形中一些其他关系式在解题中的应用。如在△ABC中A>B⇔a>b⇔sinA>sinB,A>B⇔a>b⇔cosA<cosB.





