2009年高考数学试题命题预测及名师指导
【试题举例】
如果正数a,b,c,d满足a+b=cd=4,那么( )
A.ab≤c+d,且等号成立时a,b,c,d的取值唯一
B.ab≥c+d,且等号成立时a,b,c,d的取值唯一
C.ab≤c+d,且等号成立时a,b,c,d的取值不唯一
D.ab≥c+d,且等号成立时a,b,c,d的取值不唯一
【答案】A
【解析】∵正数a,b,c,d满足a+b=cd=4,∴4=a+b≥2√ab,即ab≤4,当且仅当a=b=2时,“=”成立;又4=cd≤(c+d/2)2,∴c+d≥4,当且仅当c=d=2时,“=”成立;综上得ab≤c+d,且等号成立时a,b,c,d的取值都为2,选A.
(3)掌握分析法、综合法、比较法证明简单的不等式。
【导读】1.在证明不等式的过程中,分析法和综合法是不能分离的,如果使用综合法证明不等式难以入手时,常用分析法探索证题途径,之后用综合法的形式写出它的证明过程。有时问题证明难度较大,常使用分析综合法,实现两头往中间靠以达到证题目的。
2.由于高考试题不会出现单一的不等式的证明题,常常与函数、数列、三角、方程综合在一起,所以在学习中,不等式的证明除常用的三种方法外,还有其他方法,如比较大小。证明不等式的常用方法有:差、商比较法、函数性质法、分析综合法和放缩法。要能了解常见的放缩途径,如:利用增或舍、分式性质、函数单调性、有界性、基本不等式及绝对值不等式性质和数学归纳法等。有时要先对不等式作等价变形再进行证明,有时几种证明方法综合使用。
3.比较法有两种形式:一是作差,二是作商。用作差法证明不等式是证明不等式中最基本、最常用的方法。它的依据是不等式的基本性质。步骤是:作差(商)→变形→判断。变形的目的是为了判断。若是作差,就判断与0的大小关系,为了便于判断,往往把形式变为积或完全平方式。若是作商,两边为正,就判断与1的大小关系。
【试题举例】
当x∈(1,2)时,不等式x2+mx+4<0恒成立,则m的取值范围是 .
【答案】m≤-5
【解析】构造函数:f(x)=x2+mx+4,x∈[1,2].由于当x∈(1,2)时,
不等式x2+mx+4<0恒成立。则f(1)≤0,f(2)≤0,即
1+m+4≤0,4+2m+4≤0.解得:m≤-5.
(4)掌握简单不等式的解法。
【导读】1.解不等式的过程,实质上是不等式等价转化过程。因此在学习中理解保持同解变形是解不等式应遵循的基本原则。
2.各类不等式最后一般都要化为一元一次不等式(组)或一元二次不等式(组)来解,这体现了转化与化归的数学思想。
3.解不等式几乎是每年高考的必考题,重点仍是含参数的有关不等式,对字母参数的逻辑划分要具体问题具体分析,必须注意分类不重、不漏、完全、准确。
【试题举例】
不等式:x-1/x*x-4>0的解集为( )
A.(-2,1) B.(2,+∞)
C.(-2,1)∪(2,+∞) D.(-∞,-2)∪(1,+∞)
【答案】C
【解析】不等式:x-1/x*x-4>0,∴x-1/(x+2)(x-2)>0,原不等式的解集为(-2,1)∪(2,+∞),选C.
(5)理解不等式│a│-│b│≤│a+b│≤│a│+│b│.
【导读】1.解含有绝对值的不等式的指导思想是去掉绝对值。常用的方法是:(1)由定义分段讨论;(2)利用绝对值不等式的性质;(3)平方。
2.绝对值是历年高考的重点,而绝对值不等式更是常考常新。在考试中要从绝对值的定义和几何意义来分析,绝对值的特点是带有绝对值符号,如何去掉绝对值符号,一定要学会方法,切不可以题论题。
3.不等式在数学的各个分支中都有广泛的应用,同时还是继续学习高等数学的基础。纵观历年试题,涉及不等式内容的考题大致可分为以下几类:①不等式的证明;②解不等式;③取值范围的问题;④应用题。
【试题举例】
不等式|2x-1|-x<1的解集是 .
【答案】(0,2)
【解析】|2x-1|-x<1⇒|2x-1|<x+1⇒-(x+1)<2x-1<x+1
∴{-(x+1)<2x-1,2x-1<x+1}⇒0<x<2.
5.三角函数
考试内容:
角的概念的推广。弧度制。
任意角的三角函数。单位圆中的三角函数线。同角三角函数的基本关系式:sin2α+cos2α=1,sina/cosa=tanα,tanαcotα=1.正弦、余弦的诱导公式。
两角和与差的正弦、余弦、正切。二倍角的正弦、余弦、正切。
正弦函数、余弦函数的图象和性质。周期函数。函数y=Asin(ωx+φ)的图象。正切函数的图象和性质。已知三角函数值求角。
正弦定理。余弦定理。斜三角形解法。
考试要求:
(1)了解任意角的概念、弧度的意义。能正确地进行弧度与角度的换算。
【导读】近年的高考题中,三角函数主要考查基础知识、基本技能、基本方法,复习中注意“三基”的落实。一般都在选择题与填空题中考查,多为容易或中等难度的题目。三角函数符号规律记忆口诀:一全正,二正弦,三是切,四余弦。要熟悉任意角的概念、弧度制与角度制的互化、弧度制下的有关公式、任意角的三角函数概念。
【试题举例】
α是第四象限角,tanα=-5/12,则sinα等于( )
A.1/5 B.-1/5 C5/13. D.-5/13
【答案】D
【解析】α是第四象限角,tanα=-5/12,则sinα=-1/√1+tana*tana=-5/13.
(2)理解任意角的正弦、余弦、正切的定义。了解余切、正割、余割的定义,掌握同角三角函数的基本关系式。掌握正弦、余弦的诱导公式。了解周期函数与最小正周期的意义。
【导读】同角三角函数基本关系式是其他公式推导的理论基础。对于诱导公式,可用“奇变偶不变,符号看象限”概括。三角公式是三角函数的心脏,它贯穿于整个的三角运算过程之中。在已知一个角的三角函数值,求这个角的其他三角函数值时,要注意题设中角的范围,并就不同的象限分别求出相应的值。
【试题举例】
已知简谐运动f(x)=2sin(π/3x+φ)(|φ <π/2)的图象经过点(0,1),则该简谐运动的最小正周期T和初相φ分别为( )
A.T=6,φ=π/6 B.T=6,φ=π/3
C.T=6π,φ=π/6 D.T=6π,φ=π/3
【答案】A
【解析】依题意2sinφ=1,结合|φ <可得π/2φ=π/6,易得T=6,故选A.





