六年级数学 上册教材分析2

减小字体 增大字体 作者:本站收集整理  来源:本站收集整理  发布时间:2010-05-27 12:02:10
按比例分配问题可以采用不同的思路和方法来解答。例5的编排在建立比的概念之后,适宜用比的知识解答。“兔子”卡通把比看作份数,“小鸟”卡通把比看作分数,都是从3∶2的具体含义出发,经过推理形成解题思路的。也可以先在教材的方格图上,通过涂色得到启发。如果每次涂5个方格,其中3个红色方格、2个黄色方格,那么要6次(30÷5=6)刚好涂完。所以红色方格一共有30÷5×3=18(格),黄色方格一共有30÷5×2=12(格)。如果把方格图里的3行(列)涂红色、2行(列)涂黄色,那么就能直观看到红色方格是30格的3/5,黄色方格是30格的2/5,所以两种颜色的格数分别用30×3/5和30×2/5计算。 
“兔子”卡通和“小鸟”卡通的解法似乎不同,其实是相通的。首先是思路相通,都按下图的线索思考。
红色与黄色方格数的比是3∶2→红色方格占3份,黄色方格占2份,30个方格是5份→红色方格占总格数的3/5,黄色方格占总格数的2/5
其次是算法相通,30÷5×3可以看成求30的3/5是多少,30÷5×2就是求30的2/5是多少。沟通两种解法的联系,要提倡“小鸟”卡通的方法,突出按比例分配问题转化成求一个数的几分之几是多少的问题。 
“试一试”里出现了1∶2∶3,对连比的概念不需要作过多解释。学生会从两个数的比来体会这个连比的含义,只要能够说出红色方格占1份、黄色方格占2份、绿色方格占3份,就能应用解答例5的经验完成这道题。卡通的问题“三种颜色的方格各占方格总数的几分之几”,是引导学生用分数乘法解决这个实际问题。 
“练一练”第2题给出了幼儿园大班、中班、小班各有的人数,把180块巧克力按班级人数的比分配。这道题变式呈现按比例分配的问题,没有直接给出班级人数比,要求学生根据人数先想出比,然后按比例分配。这道题还是解答练习十四第2、8题的平台。 
练习十四第6题根据一个已知的比,联想出一些有关的比或分数,一方面是锻炼发散思维,培养转化能力。另一方面是加强比的概念,为解答第7、8题作思路铺垫。如第7题,药粉和水的质量比是1∶40,由此可知药粉质量是水的1/40,水的质量是药粉的40倍。联想的这些数量关系,可以用于解答这道题。 
四、 发现、应用规律——实践活动的重心。 
实践活动《大树有多高》测量树、旗杆、楼房的高度。这些物体比较高,它们的高度很难用尺直接度量,要通过“在同一地点,同时测得的竿长和影长的比值相等”的规律,间接获得。发现和应用这个规律是本次实践活动的重点。为此,教材把活动设计成两部分。 
在“量量比比”这部分逐步发现规律。首先在太阳光下,把几根同样长的竹竿直立在地面上,量出每根竹竿的影长。设计这一活动有三个目的:一是懂得什么叫影长;二是学会测量影长;三是体会同一时间、同样长的竹竿的影长相等。教材利用图画示范了怎样把竹竿直立在地面上、怎样量影长,还通过卡通的问题引导学生比较影长,有所发现。然后把几根长度不同的竹竿直立在地面上,按照表格的要求,分别测出每根竹竿的长度及影长,算出竿长与影长的比值,发现竹竿有长、有短,影长有长、有短,但各根竹竿的竿长和影长的比值是相等的。这就是第78页下面的结论。 
在“议议做做”这部分应用规律。教材没有把怎样应用规律测量树高、楼房高的方法直接告诉学生,而是创设一系列的问题情境,引导学生体会方法。第一步推想3米长的竹竿,直立在地面上的影长是多少。根据前面的测量和求得的比值,推想是多样的,可以估计,也可以计算。如3米长度大约是前面某根竹竿长度的几倍或几分之几,3米竹竿的影长就是前面那根竹竿影长的几倍或几分之几。又如根据“3米∶ 影长=确定的比值”列算式计算。让学生推算,是体会竿长与影长的比值,可以用来计算同一时间、相近地点其他竹竿的竿长或影长。即前面发现的规律可用于测量物体的高度。第二步想办法测量大树的高。要通过交流,整理思路:测出1根竹竿的长度和影长,求出竿长与影长的比值;再测出树的影长,求它的高。第三步用上面的方法,实际测量校园里的一棵大树的高。为了便于操作和计算,教材设计了一张表格,把测量得到的竹竿竿长、影长和大树影长填在表格里。通过填表整理数据,想到算法。第四步是延伸。用同样的方法测一测、算一算楼房和旗杆的高。怎样比较正确地测量楼房的影长,需要教师给予指点。第五步是没有同时测量竹竿的影长和大树的影长,用上面的方法计算树的高,不会得到准确结果。突出必须“同一时间”测量影长。
第六单元《分数四则混合运算》教材分析
本单元在分数四则计算和简单应用的基础上,主要教学分数四则混合运算和稍复杂的求一个数的几分之几是多少的实际问题。这部分内容是五年级教学的分数知识的综合、提高和总结,对掌握和应用分数知识有很大的影响。在内容的编排上有以下几个特点。
第一,教学计算,例题的内容容量很大。例1教学分数四则混合运算,包括按运算顺序计算和应用运算律简便计算。在这道例题中,既要把整数四则混合运算的运算顺序迁移过来,还要理解整数的运算律在分数中同样适用。把按运算顺序计算和应用运算律简便计算有机结合起来,把口算和笔算结合起来,组建四则混合运算的认知结构,有益于理解和掌握计算知识,形成实实在在的计算能力。 
第二,教学解决实际问题,例题的编排细致。本单元解答稍复杂的求一个数的几分之几是多少的实际问题,一般列综合式计算。提出这个要求有两点原因:首先是前面刚教学了四则混合运算,学生具备列综合算式的能力。更重要的是,六年级(下册)列方程解答稍复杂的百分数应用题,要以现在的综合算式的数量关系为依托。 
教材里稍复杂的求一个数的几分之几是多少的实际问题都是两步计算的问题,这些实际问题的数量关系是教学重点,也是难点。为此,编排了两道例题。例2及“练一练”都是先求总数的几分之几是多少,再求总数的另一部分是多少。例3及“练一练”都是先求一个数的几分之几是多少,再求比这个数多(少)几的数是多少。两道例题循序渐进地引导学生把第三单元里学到的“求一个数的几分之几是多少”这个数量关系与实际生活中的其他数量关系联系起来,提高解决实际问题的能力。 
第三,不教学稍复杂的分数除法问题。传统教材教学分数乘法应用题之后还教学分数除法应用题,而且把除法应用题与乘法应用题对称编排。本单元只编排分数乘法问题,不教学除法问题,要突出“稍复杂的求一个数的几分之几是多少”的问题的数量关系。因为分数乘法问题在日常生活中比较常见,它的数量关系、解题思路能迁移到稍复杂的百分数问题中去。 

上一页  [1] [2] [3] [4] [5] [6] [7]  下一页

Tags:

作者:本站收集整理
  • 好的评价 如果您觉得此文章好,就请您
      0%(0)
  • 差的评价 如果您觉得此文章差,就请您
      0%(0)

文章评论评论内容只代表网友观点,与本站立场无关!

   评论摘要(共 0 条,得分 0 分,平均 0 分) 查看完整评论