六年级数学 上册教材分析2

减小字体 增大字体 作者:本站收集整理  来源:本站收集整理  发布时间:2010-05-27 12:02:10
二、 教学百分数与小数、分数的改写——在探索的基础上点拨技巧。 
百分数与小数的改写是相互进行的,有时把小数改写成百分数,有时把百分数改写成小数。这些改写经常应用于百分数的计算和解决实际问题。例2联系比较数的大小的问题,首先让学生感到小数与百分数的改写是客观需要。如果不把1.15改写成百分数,或者不把110%改写成小数,直接比出1.15和110%的大小是很困难的。例题同时出现把小数化成百分数的过程,又把百分数化成小数的过程。这是考虑了学生独立解决问题,会有不同的思路,会选择不同的方法,教学应该尊重他们的想法和做法。在交流的时候,学生既介绍自己的思考,也吸收他人的方法,集思广益、资源互补、成果共享,获得完整的知识。教材鼓励学生联系已有的数概念,主动探索改写的方法。如两位小数表示百分之几,1.15可以写成115/100;百分数是分母为100的分数,110%可以写成110/100。只要小数概念和百分数的意义清楚、正确,独立进行这些改写是完全可能的。 
第102页“试一试”第1题继续把一位小数和三位小数化成百分数。一位小数表示十分之几,可以直接写成()/10;三位小数表示千分之几,可以直接写成()/1000。把十分之几和千分之几的分数都写成()/100是十分重要的一步,教学要让学生体会这一步是写成百分数的需要,在应用分数的基本性质。教材还通过大卡通的提问,引导学生把写成的百分数与原来的小数比较,研究从小数到百分数,数的外在形式发生了哪些变化。发现小数改写百分数,原来的小数点要向右移动两位。理解小数点向右移动两位的同时,给数添上百分号,数的分子、分母同时乘100,大小不变。把这些变化视为规律,当成改写操作的要领和方法,可以直接应用到小数改写成百分数中去,简化改写的思路与过程。至于百分数化成小数,是小数改写成百分数的反向行为,学生在“兔子”卡通的改写中体验了思考与方法。教材要求在得出小数直接写成百分数的方法后,通过逆向推理,得出百分数直接写成小数的方法,并在“试一试”第2题验证和应用,体会去掉百分号的同时,把小数点向左移动两位,百分数的分子、分母同时除以100,大小不变。 
另外,小数与百分数相互改写,虽然是反向的思考、反向的行为,却共同组成一类改写的完整结构。它们相互促进,使知识与技能不成为机械记忆的内容,这些也是例题和“试一试”的编写思想。 
例3教学分数化成百分数,“试一试”里是百分数化成分数。把分数与百分数相互改写的教学分开编排,是因为两个改写的方法不一样。分开编排,便教利学。分数化成百分数,一般利用分数和除法的关系,先把分数化成小数,再把小数写成百分数。小数作为分数化成百分数的中间环节,把分数向百分数的改写分解成连续的两步改写,充分利用了已有的知识经验。分子除以分母,有除尽或者除不尽两种可能,例3兼顾了这两种情况,其中前一小题的商是有限小数,后一小题的商是无限小数。对除不尽这种情况,教材示范了得数保留三位小数,以及把近似数化成百分数的方法和书写格式,还在底注里作了说明。 
百分数改写成分数,一般先把百分数写成分母是100的分数,再约分化简。在教学百分数的表示方法时,教材曾经指出:百分数通常不写成分数的形式,而在原来的分子后面加上百分号“%”。现在把百分数写成分母是100的分数形式,是逆向应用这个知识。“试一试”把三个百分数都先写成()/100,突出了百分数改写成分数的基本思路。写出的23/100是最简分数,23%化成分数的最后结果就是它。75/100可以约分,75%改写成的分数应该化简为3/4。12.5/100的分子是小数,还要应用分数的基本性质,把分数的分子和分母都变成整数,并约分化简。在“试一试”的最后,要求学生想一想分数改写成百分数要注意什么,百分数改写成分数要注意什么,用这种方式小结例3的教学。“注意什么”应包括改写的基本思路与方法,改写时一些技术性的常规要求和处理习惯,以及改写时的人个体会。 
三、 教学百分数的实际问题——围绕百分数的意义思考数量关系。 
求一个数是另一个数的百分之几,是百分数的一类简单应用,例4和例5都解决这方面的实际问题。例4教学比较一般的问题,容易找到相比较的两个数量,并和百分数的意义联系起来。例5教学求百分率的问题,如合格率、出勤率等,是百分数意义的专业应用。先编排比较一般的问题,理解求百分之几问题的数量关系和解答方法。以这些知识和经验为基础,教学求百分率的问题,难度就降低了。 
五年级(下册)认识分数,曾经用几分之几表示两根线条的长度关系(第39页例4),六年级(下册)教学分数乘法,用分数表示条形图里直条的数量间的关系(第41页例3)。本单元例4用条形图表示王红等3人一周中长跑的路程,学生看了条形图,不仅能了解各人跑的千米数,还能引起对旧知识的回忆,直观地感觉到图中的那些与几分之几有关的数量,如李芳跑的路程是王红的4/5,王红跑的路程是李芳的5/4……这些是解答一个数是另一个数的百分之几可利用的经验。 
求一个数是另一个数的百分之几,可以看作求一个数是另一个数的几分之几的特殊情况。它的问题表述形式、数量关系以及解答方法,都与求一个数是另一个数的几分之几相同。它的特殊表现在答案必须是百分之几,并用百分数的形式表示。例4在条形图的情境中,提出李芳跑的路程是王红的百分之几,引导学生把这个问题与李芳跑的路程是王红的几分之几联系起来,使已有的解题经验迁移到新的问题情境中,想到先算李芳跑的路程是王红的几分之几,再化成百分数。在学生列式计算4÷5=4/5=80%以后,教材注意指导求百分之几的计算技巧:计算4÷5,可以写出小数形式的商,再把小数改写成百分数。让学生体会,如果先写成分数形式的商,还得化成小数,再写成百分数,不如用小数表示除法计算的结果简便。
“试一试”求王红跑的路程是林小刚的百分之几。提出这个问题,教学时要注意两点:一是突出求百分之几问题的数量关系,例4是李芳跑的路程和王红跑的路程比,把王红跑的路程看作“1”;例5是王红跑的路程与林小刚跑的路程比,把林小刚跑的路程看作“1”。王红跑的千米数,在前一个问题的算式里是除数,在后一个问题的算式里是被除数。二是算式5÷7的商是无限小数,应该和前面的分数化成百分数一样,遇到除不尽时,商保留三位小数,即百分号前保留一位小数。 
例5教学求百分率的实际问题,关键是理解出勤率的含义。教材指出,出勤率就是实际出勤人数占应出勤人数的百分之几,把求百分率解释成求一个数是另一个数的百分之几,学生列式计算出勤率就不会有困难了。在计算田径队周一的出勤率后,自己选择两天的数据计算出勤率,巩固对出勤率的理解。周三、周四的实际出勤人数和应出勤人数相同,算式是40÷40=1,要指导学生把1改写成100%。还要让学生反思,为什么周一、周二、周五的出勤率不是100%?出勤率能高于100%吗?使他们对出勤率的理解深入一步,成为理解其他百分率的基础。第106页“练一练”里求树苗的成活率、说说生活中百分率的例子,练习二十一里还在现实的素材里出现入学率、升学率、普及率、森林覆盖率、造林合格率……教材没有解释这些百分率的含义,让学生在出勤率的基础上,体会并说说这些百分率的含义,进一步理解百分数的意义,感受百分率在生活、生产中的广泛应用。 

上一页  [2] [3] [4] [5] [6] [7] [8]  下一页

Tags:

作者:本站收集整理
  • 好的评价 如果您觉得此文章好,就请您
      0%(0)
  • 差的评价 如果您觉得此文章差,就请您
      0%(0)

文章评论评论内容只代表网友观点,与本站立场无关!

   评论摘要(共 0 条,得分 0 分,平均 0 分) 查看完整评论