四年数学下册《三角形的内角和》教学设计和反思.doc
教学内容:
北师大版小学数学四年级下册《三角形的内角和》
设计思路:
遵循由特殊到一般的规律进行探究活动是这节课设计的主要特点之一。先让学生思考直角三角形的另外两个角是什么角,再设疑让学生判断一个三角形中有两个角是直角,引出课题。接着让学生猜想是不是所有的三角形的内角和是180°。学生通过用量的方法得出三角形的内角和大约是180°(存在误差),再引导学生通过剪拼、折拼的方法发现:各类三角形的三个内角都可以拼成一个平角。再利用课件演示进一步验证,由此获得三角形的内角和是180°的结论。接着引导学生理解将一个长方形按对角线剪成两个直角三角形,让学生发现可以用360度除以2推算所有直角三角形的内角和是180度。这一系列活动潜移默化地向学生渗透了“转化”数学思想,培养学生科学试验的态度,培养学生的统计观念。接着向学生渗透数学文化。最后让学生运用结论解决实际问题,练习的安排上,注意练习层次,共安排三个层次,逐步加深。整堂课让学生通过小组合作学习,经历探究知识的过程,明白解决问题策略的多样化。培养学生的空间观念,发展合情推理能力和初步的演绎推理能力。让学生体验数学学习的快乐。
教学目标:
1、知识目标:知道三角形内角和是180度 。
2、能力目标:
(1)、通过学生猜、测、拼、折、观察等活动,培养学生的探索、发现能力、观察和动手操作能力。
(2)、能运用三角形内角和这一规律解决实际问题。
3、情感目标:
(1)让学生在探索活动中产生对数学的好奇心,发展学生的空间观念;
(2)体验探索的乐趣和成功的快乐,增强学好数学的信心。
教学重点:引导学生发现三角形内角和是180°
教学难点:用不同方法验证三角形的内角和是180°
教具学具准备:课件、学生准备不同类型的三角形各一个,长方形。剪刀、量角器。
教学过程:
一、创设情景,引出问题
1、小游戏
(课件出示)师:在一个直角三角形里住着三个内角,平时,它们三兄弟非常团结。可是有一天,老二突然不高兴,发起脾气来,它指着老大说:“你凭什么度数最大,我也要和你一样大!”“不行啊!”老大说:“这是不可能的,否则,我们这个家就再也围不起来了……”“为什么?” 老二很纳闷。 同学们,你们知道其中的道理吗?
生猜测其中的道理。
师:那么究竟能不能有两个直角呢?让我们来画一画,画一个有两个直角的三角形。(生尝试画)
师:为什么画不出来呢?原因是什么呢?
2、引出课题
看来三角形的角之间一定存在有一些奥秘在里面,这节课我们就来研究有关三角形角的知识“三角形内角和”。(板书课题)
二、探究新课
1、三角形的内角、内角和
(1)三角形内角(课件)
三角形里面的三个角都是三角形的内角。
(2)三角形内角和
师:内角和指的是什么?
生:三角形的三个角的度数的和,就是三角形的内角和。
(多让几个学生说一说)
1、 猜一猜
师:这个三角形的内角和是多少度?
生:180°
师:是不是所有的三角形的内角和都是180°呢?你能肯定吗?
生:是
预设1师:有的同学确定了,有的同学没有把握。大家意见不统一,我们得想个办法验证三角形的内角和是多少?可以用什么方法验证呢?
预设2师:可以用什么方法验证三角形的内角和是180度。
生:量一量。(量角器)
师:用量角器度量,你能说的更明白一些吗?
2、 量一量
(1)量一量、算一算
量一量、算一算不同类型三角形内角和各是多少度?
(2)小组合作探究
(大部分的同学已经量好了。没有量好的小组,先停下来。让我们一起来分享其他同学的测量成果。请你给大家介绍你们组测量的三角形的形状,每个角的度数和内角和是多少?)学生汇报的时候教师板书。
(3)汇报交流
学生的汇报中可能会出现答案不是惟一的情况。如180°179°181°等
师:观察这些测量结果你能发现什么?
生:都在180°左右。
师:为什么会出现这种情况?
3、 剪拼、折拼
(1) 剪拼、撕拼
预设1师:用度量的方法验证,得到的结果不统一,有没有比度量更精确的验证方法?(让学生多思考),也就是不用度量你能用别的方法验证吗?
预设2师:不着急,看黑板(板书),内角和就是(~~)
生:就是把内角合并在一起。
度量的验证方法是分别量出每个角的度数,分成单个研究。
如果把三个角合在一起考虑呢?你还有什么验证方法?
求三角形内角和就是把三角形的三个角和起来考虑问题,三个角和起来是什么角?三个角和起来是多少度的角,你有办法吗?
预设3师:如果三角形的内角和是180度,180度的角就是我们以前学过的平角
把三角形的三个角拼起来是不是一个平角?
有什么方法能把三角形的三个内角合并在一起?
预设4师:我在电脑里收索一个验证方法。(课件演示)
生:把三角形的三个角剪下来,再拼成一个角。
师:你能说的更明白一些吗?
师:你们觉得他得方法可行吗?
全班小组操作
大部分小组已经拼好了,还没拼好的小组先停一停。我们一起来分享其他小组的验证结果。
汇报交流
预设1师:(把学生的作品展示)把三个角拼在一起你们有什么发现?
(你能看出这是用什么三角形拼成的?为什么?三个角拼在一起你有什么发现?)
预设2让学生上来介绍
师:你怎么做?发现了什么?让学生展示不同类型的三角形拼成一个平角。说明三角形的内角和是180°(板书:剪拼 一个平角)
师:这种验证方法是谁第一个发现的,我们用掌声来祝贺他。
师课件演示拼的过程。
(2) 折拼
师:用剪拼的方法是比较精确,美中不足就是把三角形给剪了或是撕了,有没有更好验证方法?
预设1生:用折的方法
师:老师也收集了一种方法请看演示
师:要把三角形的三个角折成一个平角靠我们现在的经验是有点难。看电脑是怎样折的。(课件演示)
师:先要找到两条边的中点,用线连接起来,再按这条线折起来。再把另外的两个角折起来就可以了。
预设2学生不会想到用折的方法。
师:我在电脑里收索到折的方法,请同学们看一看他是怎么折的(课件演示)
4、 计算,推理(看学生基础选用)
将一个长方形按对角线剪成两个完全一样的直角三角形。因为长方形的四个角都是直角,长方形的内角和是360°,所以剪成后的直角三角形的内角和是180°
师:你发现了什么?
生:直角三角形的内角和是180°
师:你能说得更明白一些吗?
师:你能算出这个直角三角形的内角和吗?
生:90°乘4等于360°,在把360°除以2就等于180°(板书)
师:我们给这种验证方法取个名字?(推算)
师:这个直角三角形可以用推算的方法验证,是不是所有的直角三角形都可以用这种方法推算呢?
师:推算的验证方法是谁先发现的,我们也对他表示祝贺。
6、通过这么多的方法我们验证了三角形的内角和是1800,(板书:是1800)现在让我们用肯定的口气读一遍“三角形的内角和是